Intravital imaging of real-time endogenous actin dysregulation in proximal and distal tubules at the onset of severe ischemia-reperfusion injury

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2021-04-15
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Springer Nature
Abstract

Severe renal ischemia-reperfusion injury (IRI) can lead to acute and chronic kidney dysfunction. Cytoskeletal modifications are among the main effects of this condition. The majority of studies that have contributed to the current understanding of IRI have relied on histological analyses using exogenous probes after the fact. Here we report the successful real-time visualization of actin cytoskeletal alterations in live proximal and distal tubules that arise at the onset of severe IRI. To achieve this, we induced fluorescent actin expression in these segments in rats with hydrodynamic gene delivery (HGD). Using intravital two-photon microscopy we then tracked and quantified endogenous actin dysregulation that occurred by subjecting these animals to 60 min of bilateral renal ischemia. Rapid (by 1-h post-reperfusion) and significant (up to 50%) declines in actin content were observed. The decline in fluorescence within proximal tubules was significantly greater than that observed in distal tubules. Actin-based fluorescence was not recovered during the measurement period extending 24 h post-reperfusion. Such injury decimated the renal architecture, in particular, actin brush borders, and hampered the reabsorptive and filtrative capacities of these tubular compartments. Thus, for the first time, we show that the combination of HGD and intravital microscopy can serve as an experimental tool to better understand how IRI modifies the cytoskeleton in vivo and provide an extension to current histopathological techniques.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Corridon PR, Karam SH, Khraibi AA, Khan AA, Alhashmi MA. Intravital imaging of real-time endogenous actin dysregulation in proximal and distal tubules at the onset of severe ischemia-reperfusion injury. Sci Rep. 2021;11(1):8280. Published 2021 Apr 15. doi:10.1038/s41598-021-87807-6
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Scientific Reports
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}