Discrete Element Modeling of Powder Dispensing and Laser Heating in Direct Laser Metal Sintering Process

If you need an accessible version of this item, please submit a remediation request.
Date
2016-04-08
Language
American English
Embargo Lift Date
Department
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Office of the Vice Chancellor for Research
Abstract

ABSTRACT The growth of reliable methods to improve part created from additive manufacturing technologies greatly depend on the quantitative understanding of the mechanical properties and the microstructural behavior of the powder particles during the 3D printing procedure. To obtain a greater understanding of this process, a particle- based discrete element modeling (DEM) has incredible potential benefits in the field of manufacturing for reducing cost and control specific structures and materials of the parts created from this process. In this research, we developed a numerical tool and use it to study the powder characterization of the powder deposition process in the Direct Metal Laser Sintering (DLMS) machine. Our simulations include the modelling of particle insertion, particle spreading, and temperature distribution due to laser beam sintering process. The DEM simulation results show that the particle distribution of the powder bed after powder dispersing process. Temperature distribution after laser heating is also given.

Description
poster abstract
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Weng Hoh Lee, Yi Zhang, and Jing Zhang. 2016, April 8. Discrete Element Modeling of Powder Dispensing and Laser Heating in Direct Laser Metal Sintering Process. Poster session presented at IUPUI Research Day 2016, Indianapolis, Indiana.
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Poster
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}