Beyond the signaling effect role of amyloid–β42 on the processing of AβPP, and its clinical implications
Date
Language
Embargo Lift Date
Department
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract
Alzheimer's disease (AD) currently has over 6 million victims in the USA, alone. The recently FDA approved drugs for AD only provide mild, transient relief for symptoms without addressing underlying mechanisms to a significant extent. Basic understanding of the activities of the amyloid beta peptide (Abeta) and associated proteins such as beta-site APP-cleaving enzyme 1 (BACE1) is necessary to develop effective medical responses to AD. Recently (Exper. Neurol. 2010. 221, 18-25), Tabaton et al. have presented a model of both non-pathological and pathological Abeta activities and suggest potential therapeutic pathways based on their proposed framework of Abeta acting as the signal that induces a kinase cascade, ultimately stimulating transcription factors that upregulate genes such as BACE1. We respond by presenting evidence of Abeta's other activities, including protection against metal-induced reactive oxidizing species (ROS), modification of cholesterol transport, and potential activity as a transcription factor in its own right. We touch upon clinical implications of each of these functions and highlight the currently unexplored implications of our suggested novel function of Abeta as a transcription factor. Abeta appears to be a highly multi-functional peptide, and any or all of the pathways it engages in is a likely candidate for antiAD drug development.