Atomic Structure Evolution of Pt–Co Binary Catalysts: Single Metal Sites versus Intermetallic Nanocrystals

Abstract

Due to their exceptional catalytic properties for the oxygen reduction reaction (ORR) and other crucial electrochemical reactions, PtCo intermetallic nanoparticle (NP) and single atomic (SA) Pt metal site catalysts have received considerable attention. However, their formation mechanisms at the atomic level during high-temperature annealing processes remain elusive. Here, the thermally driven structure evolution of Pt–Co binary catalyst systems is investigated using advanced in situ electron microscopy, including PtCo intermetallic alloys and single Pt/Co metal sites. The pre-doping of CoN4 sites in carbon supports and the initial Pt NP sizes play essential roles in forming either Pt3Co intermetallics or single Pt/Co metal sites. Importantly, the initial Pt NP loadings against the carbon support are critical to whether alloying to L12-ordered Pt3Co NPs or atomizing to SA Pt sites at high temperatures. High Pt NP loadings (e.g., 20%) tend to lead to the formation of highly ordered Pt3Co intermetallic NPs with excellent activity and enhanced stability toward the ORR. In contrast, at a relatively low Pt loading (<6 wt%), the formation of single Pt sites in the form of PtC3N is thermodynamically favorable, in which a synergy between the PtC3N and the CoN4 sites could enhance the catalytic activity for the ORR, but showing insufficient stability.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Li, X., He, Y., Cheng, S., Li, B., Zeng, Y., Xie, Z., Meng, Q., Qingping, L., Kisslinger, K., Tong, X., Hwang, S., Yao, S., Li, C., Qiao, Z., Shan, C., Zhu, Y., Xie, J., Wang, G., Wu, G., & Su, D. (2021). Atomic Structure Evolution of Pt–Co Binary Catalysts: Single Metal Sites versus Intermetallic Nanocrystals. Advanced Materials, 33(48), 2106371. https://doi.org/10.1002/adma.202106371
ISSN
0935-9648, 1521-4095
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Advanced Materials
Rights
Publisher Policy
Source
Author
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}