A multivariate finite mixture latent trajectory model with application to dementia studies

dc.contributor.authorLai, Dongbing
dc.contributor.authorXu, Huiping
dc.contributor.authorKatz, Barry
dc.contributor.authorKoller, Daniel
dc.contributor.authorForoud, Tatiana
dc.contributor.authorGao, Sujuan
dc.contributor.departmentDepartment of Biostatistics, Richard M. Fairbanks School of Public Healthen_US
dc.date.accessioned2016-09-30T20:09:59Z
dc.date.available2016-09-30T20:09:59Z
dc.date.issued2016
dc.description.abstractDementia patients exhibit considerable heterogeneity in individual trajectories of cognitive decline, with some patients showing rapid decline following diagnoses while others exhibiting slower decline or remaining stable for several years. Dementia studies often collect longitudinal measures of multiple neuropsychological tests aimed to measure patients’ decline across a number of cognitive domains. We propose a multivariate finite mixture latent trajectory model to identify distinct longitudinal patterns of cognitive decline simultaneously in multiple cognitive domains, each of which is measured by multiple neuropsychological tests. EM algorithm is used for parameter estimation and posterior probabilities are used to predict latent class membership. We present results of a simulation study demonstrating adequate performance of our proposed approach and apply our model to the Uniform Data Set from the National Alzheimer's Coordinating Center to identify cognitive decline patterns among dementia patients.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationLai, D., Xu, H., Koller, D., Foroud, T., & Gao, S. (2016). A multivariate finite mixture latent trajectory model with application to dementia studies. Journal of Applied Statistics, 43 (14), 2503-2523. http://doi.org/10.1080/02664763.2016.1141181en_US
dc.identifier.urihttps://hdl.handle.net/1805/11060
dc.language.isoenen_US
dc.publisherTaylor & Francisen_US
dc.relation.isversionof10.1080/02664763.2016.1141181en_US
dc.relation.journalJournal of Applied Statisticsen_US
dc.rightsPublisher Policyen_US
dc.sourceAuthoren_US
dc.subjectmultivariate finite mixture latent trajectoryen_US
dc.subjectcognitive declineen_US
dc.subjectdementiaen_US
dc.titleA multivariate finite mixture latent trajectory model with application to dementia studiesen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Gao_2016_finite.pdf
Size:
449.01 KB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
nihms811792.pdf
Size:
866.96 KB
Format:
Adobe Portable Document Format
Description:
NIH PA Manuscript
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.88 KB
Format:
Item-specific license agreed upon to submission
Description: