Utilizing Multiple in Silico Analyses to Identify Putative Causal SCN5A Variants in Brugada Syndrome

Abstract

Brugada syndrome (BrS) is an inheritable sudden cardiac death disease mainly caused by SCN5A mutations. Traditional approaches can be costly and time-consuming if all candidate variants need to be validated through in vitro studies. Therefore, we developed a new approach by combining multiple in silico analyses to predict functional and structural changes of candidate SCN5A variants in BrS before conducting in vitro studies. Five SCN5A non-synonymous variants (1651G>A, 1776C>G, 1673A>G, 3269C>T and 3578G>A) were identified in 14 BrS patients using direct DNA sequencing. Several bioinformatics algorithms were applied and predicted that 1651G>A (A551T) and 1776C>G (N592K) were high-risk SCN5A variants (odds ratio 59.59 and 23.93). The results were validated by Mass spectrometry and in vitro electrophysiological assays. We concluded that integrating sequence-based information and secondary protein structures elements may help select highly potential variants in BrS before conducting time-consuming electrophysiological studies and two novel SCN5A mutations were validated.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Juang JM, Lu TP, Lai LC, et al. Utilizing multiple in silico analyses to identify putative causal SCN5A variants in Brugada syndrome. Sci Rep. 2014;4:3850. Published 2014 Jan 27. doi:10.1038/srep03850
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Scientific Reports
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}