A deep learning framework identifies dimensional representations of Alzheimer’s Disease from brain structure

dc.contributor.authorYang, Zhijian
dc.contributor.authorNasrallah, Ilya M.
dc.contributor.authorShou, Haochang
dc.contributor.authorWen, Junhao
dc.contributor.authorDoshi, Jimit
dc.contributor.authorHabes, Mohamad
dc.contributor.authorErus, Guray
dc.contributor.authorAbdulkadir, Ahmed
dc.contributor.authorResnick, Susan M.
dc.contributor.authorAlbert, Marilyn S.
dc.contributor.authorMaruff, Paul
dc.contributor.authorFripp, Jurgen
dc.contributor.authorMorris, John C.
dc.contributor.authorWolk, David A.
dc.contributor.authorDavatzikos, Christos
dc.contributor.authoriSTAGING Consortium
dc.contributor.authorBaltimore Longitudinal Study of Aging (BLSA)
dc.contributor.authorAlzheimer’s Disease Neuroimaging Initiative (ADNI)
dc.contributor.departmentRadiology and Imaging Sciences, School of Medicine
dc.date.accessioned2025-03-05T16:50:04Z
dc.date.available2025-03-05T16:50:04Z
dc.date.issued2021-12-03
dc.description.abstractHeterogeneity of brain diseases is a challenge for precision diagnosis/prognosis. We describe and validate Smile-GAN (SeMI-supervised cLustEring-Generative Adversarial Network), a semi-supervised deep-clustering method, which examines neuroanatomical heterogeneity contrasted against normal brain structure, to identify disease subtypes through neuroimaging signatures. When applied to regional volumes derived from T1-weighted MRI (two studies; 2,832 participants; 8,146 scans) including cognitively normal individuals and those with cognitive impairment and dementia, Smile-GAN identified four patterns or axes of neurodegeneration. Applying this framework to longitudinal data revealed two distinct progression pathways. Measures of expression of these patterns predicted the pathway and rate of future neurodegeneration. Pattern expression offered complementary performance to amyloid/tau in predicting clinical progression. These deep-learning derived biomarkers offer potential for precision diagnostics and targeted clinical trial recruitment.
dc.eprint.versionFinal published version
dc.identifier.citationYang Z, Nasrallah IM, Shou H, et al. A deep learning framework identifies dimensional representations of Alzheimer's Disease from brain structure. Nat Commun. 2021;12(1):7065. Published 2021 Dec 3. doi:10.1038/s41467-021-26703-z
dc.identifier.urihttps://hdl.handle.net/1805/46224
dc.language.isoen_US
dc.publisherSpringer Nature
dc.relation.isversionof10.1038/s41467-021-26703-z
dc.relation.journalNature Communications
dc.rightsAttribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourcePMC
dc.subjectPrognostic markers
dc.subjectAlzheimer's disease
dc.subjectMagnetic resonance imaging
dc.subjectComputer science
dc.titleA deep learning framework identifies dimensional representations of Alzheimer’s Disease from brain structure
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Yang2021Deep-CCBY.pdf
Size:
3.07 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.04 KB
Format:
Item-specific license agreed upon to submission
Description: