Two-Stage Method for Optimal Operation of a Distributed Energy System
Date
Language
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract
In this paper, a gas turbine-based distributed energy system (DES) model is developed for the design of operation planning. An operation mode aimed to optimize the operation of this DES is proposed. A multi-objective cost function considering the total system efficiency and operational cost is formulated for the optimal design of DES operation and control. A two-stage approach combining the particle swarm algorithm (PSO) with the sequential quadratic programming (SQP) method is employed to solve the nonlinear programming problem. Optimal operation strategies for the DES are investigated using the proposed two-stage method under three different demand loads in terms of weather conditions. The simulation results are compared with those using traditional rule-based operation methods. It is found that under the proposed operation mode, the DES is capable of achieving an improved performance in terms of thermal efficiency and operational cost.