Small molecule inhibition of CBP/catenin interactions eliminates drug resistant clones in acute lymphoblastic leukemia

dc.contributor.authorGang, Eun Ji
dc.contributor.authorHsieh, Yao-Te
dc.contributor.authorPham, Jennifer
dc.contributor.authorZhao, Yi
dc.contributor.authorNguyen, Cu
dc.contributor.authorHuantes, Sandra
dc.contributor.authorPark, Eugene
dc.contributor.authorNaing, Khatija
dc.contributor.authorKlemm, Lars
dc.contributor.authorSwaminathan, Srividya
dc.contributor.authorConway, Edward M.
dc.contributor.authorPelus, Louis M.
dc.contributor.authorCrispino, John
dc.contributor.authorMullighan, Charles
dc.contributor.authorMcMillan, Michael
dc.contributor.authorMüschen, Markus
dc.contributor.authorKahn, Michael
dc.contributor.authorKim, Yong-Mi
dc.contributor.departmentDepartment of Microbiology & Immunology, School of Medicineen_US
dc.date.accessioned2015-09-09T14:56:34Z
dc.date.available2015-09-09T14:56:34Z
dc.date.issued2014-04-24
dc.description.abstractDrug resistance in acute lymphoblastic leukemia (ALL) remains a major problem warranting new treatment strategies. Wnt/catenin signaling is critical for the self-renewal of normal hematopoietic progenitor cells. Deregulated Wnt signaling is evident in chronic and acute myeloid leukemia, however little is known about ALL. Differential interaction of catenin with either the Kat3 coactivator CREBBP (CBP) or the highly homologous EP300 (p300) is critical to determine divergent cellular responses and provides a rationale for the regulation of both proliferation and differentiation by the Wnt signaling pathway. Usage of the coactivator CBP by catenin leads to transcriptional activation of cassettes of genes that are involved in maintenance of progenitor cell self-renewal. However, the use of the coactivator p300, leads to activation of genes involved in the initiation of differentiation. ICG-001 is a novel small molecule modulator of Wnt/catenin signaling, which specifically binds to the N-terminus of CBP and not p300, within amino acids 1–110, thereby disrupting the interaction between CBP and catenin. Here, we report that selective disruption of the CBP/β- and γ-catenin interactions using ICG-001 leads to differentiation of pre-B ALL cells and loss of self-renewal capacity. Survivin, an inhibitor-of-apoptosis protein, was also downregulated in primary ALL after treatment with ICG-001. Using ChIP assay, we demonstrate occupancy by CBP of the survivin promoter, which is decreased by ICG-001 in primary ALL. CBP-mutations have been recently identified in a significant percentage of ALL patients, however, almost all of the identified mutations reported occur C-terminal to the binding site for ICG-001. Importantly, ICG-001, regardless of CBP mutational status and chromosomal aberration, leads to eradication of drug-resistant primary leukemia in combination with conventional therapy in vitro and significantly prolongs the survival of NOD/SCID mice engrafted with primary ALL. Therefore, specifically inhibiting CBP/catenin transcription represents a novel approach to overcome relapse in ALL.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationGang, E. J., Hsieh, Y.-T., Pham, J., Zhao, Y., Nguyen, C., Huantes, S., … Kim, Y.-M. (2014). Small molecule inhibition of CBP/catenin interactions eliminates drug resistant clones in acute lymphoblastic leukemia. Oncogene, 33(17), 2169–2178. http://doi.org/10.1038/onc.2013.169en_US
dc.identifier.urihttps://hdl.handle.net/1805/6810
dc.language.isoen_USen_US
dc.publisherNPG - Nature Publishing Groupen_US
dc.relation.isversionof10.1038/onc.2013.169en_US
dc.relation.journalOncogeneen_US
dc.rightsPublisher Policyen_US
dc.sourcePMCen_US
dc.subjectAcute lymphoblastic leukemiaen_US
dc.subjectdrug resistanceen_US
dc.subjectsmall molecule inhibitoren_US
dc.subjectCBPen_US
dc.subjectp300en_US
dc.subjectICG-001en_US
dc.titleSmall molecule inhibition of CBP/catenin interactions eliminates drug resistant clones in acute lymphoblastic leukemiaen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
nihms560207.pdf
Size:
2.47 MB
Format:
Adobe Portable Document Format
Description:
Article
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.88 KB
Format:
Item-specific license agreed upon to submission
Description: