In Vitro effects of Plantago major extract, aucubin and baicalein on Candida albicans biofilm formation, metabolic activity and cell surface hydrophobicity

Date
2015
Language
English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Wiley
Abstract

Purpose To determine the in vitro effectiveness of Plantago major extract, along with two of its active components, aucubin and baicalein, on the inhibition of Candida albicans growth, biofilm formation, metabolic activity, and cell surface hydrophobicity.

Materials and Methods Twofold dilutions of P. major, aucubin, and baicalein were used to determine the minimum inhibitory concentration (MIC), minimum fungicidal concentration (MFC), and the minimum biofilm inhibitory concentration (MBIC) of each solution. Separately, twofold dilutions of P. major, aucubin, and baicalein were used to determine the metabolic activity of established C. albicans biofilm using a 2,3-bis (2- methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-carboxanilide reduction assay. Twofold dilutions of P. major, aucubin, and baicalein were used to determine the cell surface hydrophobicity of treated C. albicans biofilm by a two-phase assay using hexadecane. The hydrophobicity percentage of the cell surface was then calculated. A mixed-model ANOVA test was used for intergroup comparisons.

Results The MICs of P. major extract (diluted 1:2 to 1:8), aucubin (61 to 244 μg/ml), and baicalein (0.0063 to 100 μg/ml) on the total growth of C. albicans were noticeable at their highest concentrations, and the inhibition was dose dependent. The MFC was evaluated after 48 hours of incubation, and aucubin (244 μg/ml) exhibited a strong fungicidal activity at its highest concentration against C. albicans growth. The MBIC indicated no growth or reduced growth of C. albicans biofilm at the highest concentrations of aucubin (61 to 244 μg/ml) and baicalein (25 to 100 μg/ml). Similarly, the effects of these reagents on C. albicans biofilm metabolic activity and hydrophobicity demonstrated high effectiveness at their highest concentrations.

Conclusion P. major extract, aucubin, and baicalein caused a dose-dependent reduction on the total growth, biofilm formation, metabolic activity, and cell surface hydrophobicity of C. albicans. This demonstrates their effectiveness as antifungals and suggests their promising potential use as solutions for C. albicans biofilm-related infections.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Shirley, K. P., Windsor, L. J., Eckert, G. J., & Gregory, R. L. (2015). In Vitro Effects of Plantago Major Extract, Aucubin, and Baicalein on Candida Albicans Biofilm Formation, Metabolic Activity, and Cell Surface Hydrophobicity. Journal of Prosthodontics.. http://doi.org/10.1111/jopr.12411
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Journal of Prosthodontics
Rights
Publisher Policy
Source
Author
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}