Ectopic models for endochondral ossification: comparing pellet and alginate bead culture methods

Date
2017
Language
English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Wiley
Abstract

Key aspects of native endochondral bone development and fracture healing can be mimicked in mesenchymal stem cells (MSCs) through standard in vitro chondrogenic induction. Exploiting this phenomenon has recently emerged as an attractive technique to engineer bone tissue, however, relatively little is known about the best conditions for doing so. The objective of the present study was to compare the bone-forming capacity and angiogenic induction of hypertrophic cell constructs containing human adipose-derived stem cells (hASCs) primed for chondrogenesis in two different culture systems: high-density pellets and alginate bead hydrogels. The hASC constructs were subjected to 4 weeks of identical chondrogenic induction in vitro, encapsulated in an agarose carrier, and then implanted subcutaneously in immune-compromised mice for 8 weeks to evaluate their endochondral potential. At the time of implantation, both pellets and beads expressed aggrecan and type II collagen, as well as alkaline phosphatase (ALP) and type X collagen. Interestingly, ASCs in pellets formed a matrix containing higher glycosaminoglycan and collagen contents than that in beads, and ALP activity per cell was higher in pellets. However, after 8 weeks in vivo, pellets and beads induced an equivalent volume of mineralized tissue and a comparable level of vascularization. Although osteocalcin and osteopontin-positive osteogenic tissue and new vascular growth was found within both types of constructs, all appeared to be better distributed throughout the hydrogel beads. The results of this ectopic model indicate that hydrogel culture may be an attractive alternative to cell pellets for bone tissue engineering via the endochondral pathway.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Weiss‐Bilka, H. E., McGann, M. E., Meagher, M. J., Roeder, R. K., & Wagner, D. R. (2017). Ectopic models for endochondral ossification: comparing pellet and alginate bead culture methods. Journal of tissue engineering and regenerative medicine.
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Journal of tissue engineering and regenerative medicine
Rights
IUPUI Open Access Policy
Source
Author
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}