Bioenergetic characterization of a shallow-sea hydrothermal vent system: Milos Island, Greece

dc.contributor.authorLu, Guang-Sin
dc.contributor.authorLaRowe, Douglas E.
dc.contributor.authorFike, David A.
dc.contributor.authorDruschel, Gregory K.
dc.contributor.authorGilhooly, William P., III
dc.contributor.authorPrice, Roy E.
dc.contributor.authorAmend, Jan P.
dc.contributor.departmentEarth and Environmental Sciences, School of Science
dc.date.accessioned2024-09-10T10:20:55Z
dc.date.available2024-09-10T10:20:55Z
dc.date.issued2020-06-05
dc.description.abstractShallow-sea hydrothermal systems, like their deep-sea and terrestrial counterparts, can serve as relatively accessible portals into the microbial ecology of subsurface environments. In this study, we determined the chemical composition of 47 sediment porewater samples along a transect from a diffuse shallow-sea hydrothermal vent to a non-thermal background area in Paleochori Bay, Milos Island, Greece. These geochemical data were combined with thermodynamic calculations to quantify potential sources of energy that may support in situ chemolithotrophy. The Gibbs energies (ΔGr) of 730 redox reactions involving 23 inorganic H-, O-, C-, N-, S-, Fe-, Mn-, and As-bearing compounds were calculated. Of these reactions, 379 were exergonic at one or more sampling locations. The greatest energy yields were from anaerobic CO oxidation with NO2- (-136 to -162 kJ/mol e-), followed by reactions in which the electron acceptor/donor pairs were O2/CO, NO3-/CO, and NO2-/H2S. When expressed as energy densities (where the concentration of the limiting reactant is taken into account), a different set of redox reactions are the most exergonic: in sediments affected by hydrothermal input, sulfide oxidation with a range of electron acceptors or nitrite reduction with different electron donors provide 85~245 J per kg of sediment, whereas in sediments less affected or unaffected by hydrothermal input, various S0 oxidation reactions and aerobic respiration reactions with several different electron donors are most energy-yielding (80~95 J per kg of sediment). A model that considers seawater mixing with hydrothermal fluids revealed that there is up to ~50 times more energy available for microorganisms that can use S0 or H2S as electron donors and NO2- or O2 as electron acceptors compared to other reactions. In addition to revealing likely metabolic pathways in the near-surface and subsurface mixing zones, thermodynamic calculations like these can help guide novel microbial cultivation efforts to isolate new species.
dc.eprint.versionFinal published version
dc.identifier.citationLu GS, LaRowe DE, Fike DA, et al. Bioenergetic characterization of a shallow-sea hydrothermal vent system: Milos Island, Greece. PLoS One. 2020;15(6):e0234175. Published 2020 Jun 5. doi:10.1371/journal.pone.0234175
dc.identifier.urihttps://hdl.handle.net/1805/43238
dc.language.isoen_US
dc.publisherPublic Library of Science
dc.relation.isversionof10.1371/journal.pone.0234175
dc.relation.journalPLoS One
dc.rightsAttribution 4.0 United States
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourcePMC
dc.subjectEnergy metabolism
dc.subjectGreece
dc.subjectHydrothermal vents
dc.subjectIslands
dc.subjectThermodynamics
dc.titleBioenergetic characterization of a shallow-sea hydrothermal vent system: Milos Island, Greece
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Lu2020Bioenergetic-CCBY.pdf
Size:
3.39 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.04 KB
Format:
Item-specific license agreed upon to submission
Description: