Bayesian Zero-Shot Learning

dc.contributor.authorBadirli, Sarkhan
dc.contributor.authorAkata, Zeynep
dc.contributor.authorDundar, Murat
dc.contributor.departmentComputer and Information Science, School of Scienceen_US
dc.date.accessioned2021-12-20T20:37:08Z
dc.date.available2021-12-20T20:37:08Z
dc.date.issued2020
dc.description.abstractObject classes that surround us have a natural tendency to emerge at varying levels of abstraction. We propose a Bayesian approach to zero-shot learning (ZSL) that introduces the notion of meta-classes and implements a Bayesian hierarchy around these classes to effectively blend data likelihood with local and global priors. Local priors driven by data from seen classes, i.e., classes available at training time, become instrumental in recovering unseen classes, i.e., classes that are missing at training time, in a generalized ZSL (GZSL) setting. Hyperparameters of the Bayesian model offer a convenient way to optimize the trade-off between seen and unseen class accuracy. We conduct experiments on seven benchmark datasets, including a large scale ImageNet and show that our model produces promising results in the challenging GZSL setting.en_US
dc.eprint.versionFinal published versionen_US
dc.identifier.citationBadirli, S., Akata, Z., & Dundar, M. (2020). Bayesian Zero-Shot Learning. In A. Bartoli & A. Fusiello (Eds.), Computer Vision – ECCV 2020 Workshops (pp. 687–703). Springer International Publishing. https://doi.org/10.1007/978-3-030-66415-2_47en_US
dc.identifier.urihttps://hdl.handle.net/1805/27186
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.isversionof10.1007/978-3-030-66415-2_47en_US
dc.relation.journalComputer Vision – ECCV 2020 Workshopsen_US
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.sourcePublisheren_US
dc.subjectGeneralized ZSLen_US
dc.subjectBayesian Hierarchical Modelsen_US
dc.subjectzero-shot learningen_US
dc.titleBayesian Zero-Shot Learningen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Badirli2020Bayesian-CCBYNCSA.pdf
Size:
1.85 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: