A Putative long-range RNA-RNA interaction between ORF8 and Spike of SARS-CoV-2

If you need an accessible version of this item, please submit a remediation request.
Date
2022-09-01
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Public Library of Science
Abstract

SARS-CoV-2 has affected people worldwide as the causative agent of COVID-19. The virus is related to the highly lethal SARS-CoV-1 responsible for the 2002-2003 SARS outbreak in Asia. Research is ongoing to understand why both viruses have different spreading capacities and mortality rates. Like other beta coronaviruses, RNA-RNA interactions occur between different parts of the viral genomic RNA, resulting in discontinuous transcription and production of various sub-genomic RNAs. These sub-genomic RNAs are then translated into other viral proteins. In this work, we performed a comparative analysis for novel long-range RNA-RNA interactions that may involve the Spike region. Comparing in-silico fragment-based predictions between reference sequences of SARS-CoV-1 and SARS-CoV-2 revealed several predictions amongst which a thermodynamically stable long-range RNA-RNA interaction between (23660-23703 Spike) and (28025-28060 ORF8) unique to SARS-CoV-2 was observed. The patterns of sequence variation using data gathered worldwide further supported the predicted stability of the sub-interacting region (23679-23690 Spike) and (28031-28042 ORF8). Such RNA-RNA interactions can potentially impact viral life cycle including sub-genomic RNA production rates.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Omoru OB, Pereira F, Janga SC, Manzourolajdad A. A Putative long-range RNA-RNA interaction between ORF8 and Spike of SARS-CoV-2. PLoS One. 2022;17(9):e0260331. Published 2022 Sep 1. doi:10.1371/journal.pone.0260331
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
PLoS One
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}