Differential multimerization of Moloney murine leukemia virus integrase purified under nondenaturing conditions
Files
Date
Language
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract
Retroviral integrases (IN) catalyze the integration of the reverse-transcribed viral DNA into the host genome, an essential process leading to virus replication. For Moloney murine leukemia virus (M-MuLV) IN, the limited solubility of the recombinant protein has restricted the development of biophysical and structural analyses. Herein, recombinant M-MuLV IN proteins, either full length or two nonoverlapping domain constructs, were purified under non-denaturing conditions from solubilized bacterial extracts by Ni2+-NTA resins. Additionally, WT IN was further purified by heparin chromatography. All of the purified proteins were shown to be active and stable. WT M-MuLV IN chromatographed with a peak corresponding with a dimer by gel filtration chromatography. In contrast, the single point mutant C209A IN migrated predominantly as a tetramer. For both proteins, fractions in equilibrium between dimers and tetramers were competent to assemble concerted two-end integrations and yielded a unique strand-transfer profile in the presence of a 28-mer U5 oligonucleotide substrate, indicative of a distinct conformation within the synaptic complex. This specific target-site selection was not observed with a shorter 20-mer U5 substrate. These studies provide the foundation for biophysical and structural analysis on M-MuLV IN and the mechanism of retroviral integration.