Microinjections of acetaldehyde or salsolinol into the posterior ventral tegmental area increase dopamine release in the nucleus accumbens shell

dc.contributor.authorDeehan, Gerald A.
dc.contributor.authorEngleman, Eric A.
dc.contributor.authorDing, Zheng-Ming
dc.contributor.authorMcBride, William J.
dc.contributor.authorRodd, Zachary A.
dc.contributor.departmentDepartment of Psychiatry, IU School of Medicineen_US
dc.date.accessioned2016-04-01T16:13:53Z
dc.date.available2016-04-01T16:13:53Z
dc.date.issued2013-05
dc.description.abstractBACKGROUND: Published findings indicate that acetaldehyde (ACD; the first metabolite of ethanol [EtOH]) and salsolinol (SAL; formed through the nonenzymatic condensation of ACD and dopamine [DA]) can be formed following EtOH consumption. Both ACD and SAL exhibit reinforcing properties within the posterior ventral tegmental area (pVTA) and both exhibit an inverted "U-shaped" dose-response curve. The current study was undertaken to examine the dose-response effects of microinjections of ACD or SAL into the pVTA on DA efflux in the nucleus accumbens shell (AcbSh). METHODS: For the first experiment, separate groups of male Wistar rats received pulse microinjections of artificial cerebrospinal fluid (aCSF) or 12-, 23-, or 90-μM ACD into the pVTA, while extracellular DA levels were concurrently measured in the AcbSh. The second experiment was similarly conducted, except rats were given microinjections of aCSF or 0.03-, 0.3-, 1.0-, or 3.0-μM SAL, while extracellular levels of DA were measured in the AcbSh. RESULTS: Both ACD and SAL produced a dose-dependent inverted "U-shaped" response on DA release in the AcbSh, with 23-μM ACD (200% baseline) and 0.3-μM SAL (300% baseline) producing maximal peak responses with higher concentrations of ACD (90 μM) and SAL (3.0 μM) producing significantly lower DA efflux. CONCLUSIONS: The findings from the current study indicate that local application of intermediate concentrations of ACD and SAL stimulated DA neurons in the pVTA, whereas higher concentrations may be having secondary effects within the pVTA that inhibit DA neuronal activity. The present results parallel the studies on the reinforcing effects of ACD and SAL in the pVTA and support the idea that the reinforcing effects of ACD and SAL within the pVTA are mediated by activating DA neurons.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationDeehan, G. A., Engleman, E. A., Ding, Z.-M., McBride, W. J., & Rodd, Z. A. (2013). Microinjections of acetaldehyde or salsolinol into the posterior ventral tegmental area increase dopamine release in the nucleus accumbens shell. Alcoholism, Clinical and Experimental Research, 37(5), 722–729. http://doi.org/10.1111/acer.12034en_US
dc.identifier.issn1530-0277en_US
dc.identifier.urihttps://hdl.handle.net/1805/9169
dc.language.isoen_USen_US
dc.publisherWiley Blackwell (Blackwell Publishing)en_US
dc.relation.isversionof10.1111/acer.12034en_US
dc.relation.journalAlcoholism, Clinical and Experimental Researchen_US
dc.rightsPublisher Policyen_US
dc.sourcePMCen_US
dc.subjectAcetaldehydeen_US
dc.subjectpharmacologyen_US
dc.subjectDopamineen_US
dc.subjectsecretionen_US
dc.subjectDopaminergic Neuronsen_US
dc.subjectIsoquinolinesen_US
dc.subjectNucleus Accumbensen_US
dc.subjectdrug effectsen_US
dc.subjectVentral Tegmental Areaen_US
dc.titleMicroinjections of acetaldehyde or salsolinol into the posterior ventral tegmental area increase dopamine release in the nucleus accumbens shellen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
nihms646660.pdf
Size:
508.84 KB
Format:
Adobe Portable Document Format
Description:
Author's manuscript
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.88 KB
Format:
Item-specific license agreed upon to submission
Description: