Recent Advances on Capacitive Proximity Sensors: From Design and Materials to Creative Applications

Date
2022
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
MDPI
Abstract

Capacitive proximity sensors (CPSs) have recently been a focus of increased attention because of their widespread applications, simplicity of design, low cost, and low power consumption. This mini review article provides a comprehensive overview of various applications of CPSs, as well as current advancements in CPS construction approaches. We begin by outlining the major technologies utilized in proximity sensing, highlighting their characteristics and applications, and discussing their advantages and disadvantages, with a heavy emphasis on capacitive sensors. Evaluating various nanocomposites for proximity sensing and corresponding detecting approaches ranging from physical to chemical detection are emphasized. The matrix and active ingredients used in such sensors, as well as the measured ranges, will also be discussed. A good understanding of CPSs is not only essential for resolving issues, but is also one of the primary forces propelling CPS technology ahead. We aim to examine the impediments and possible solutions to the development of CPSs. Furthermore, we illustrate how nanocomposite fusion may be used to improve the detection range and accuracy of a CPS while also broadening the application scenarios. Finally, the impact of conductance on sensor performance and other variables that impact the sensitivity distribution of CPSs are presented.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Moheimani R, Hosseini P, Mohammadi S, Dalir H. Recent Advances on Capacitive Proximity Sensors: From Design and Materials to Creative Applications. C. 2022;8(2):26. doi:10.3390/c8020026
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
C (Journal of Carbon Research)
Source
Publisher
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}