Jacobi–Trudi Identity and Drinfeld Functor for Super Yangian

dc.contributor.authorLu, Kang
dc.contributor.authorMukhin, Evgeny
dc.contributor.departmentMathematical Sciences, School of Scienceen_US
dc.date.accessioned2023-06-16T20:59:29Z
dc.date.available2023-06-16T20:59:29Z
dc.date.issued2021-11
dc.description.abstractWe show that the quantum Berezinian that gives a generating function of the integrals of motions of XXX spin chains associated to super Yangian $\textrm{Y}(\mathfrak{g}\mathfrak{l}_{m|n})$ can be written as a ratio of two difference operators of orders $m$ and $n$ whose coefficients are ratios of transfer matrices corresponding to explicit skew Young diagrams. In the process, we develop several missing parts of the representation theory of $\textrm{Y}(\mathfrak{g}\mathfrak{l}_{m|n})$ such as $q$-character theory, Jacobi–Trudi identity, Drinfeld functor, extended T-systems, and Harish-Chandra map.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationLu, K., & Mukhin, E. (2021). Jacobi–Trudi Identity and Drinfeld Functor for Super Yangian. International Mathematics Research Notices, 2021(21), 16751–16810. https://doi.org/10.1093/imrn/rnab023en_US
dc.identifier.issn1073-7928, 1687-0247en_US
dc.identifier.urihttps://hdl.handle.net/1805/33839
dc.language.isoen_USen_US
dc.publisherOxforden_US
dc.relation.isversionof10.1093/imrn/rnab023en_US
dc.relation.journalInternational Mathematics Research Noticesen_US
dc.rightsPublisher Policyen_US
dc.sourceArXiven_US
dc.subjectDrinfeld Functoren_US
dc.subjectquantum Berezinianen_US
dc.subjectsuper Yangianen_US
dc.titleJacobi–Trudi Identity and Drinfeld Functor for Super Yangianen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Lu2021Jacobi-AAM.pdf
Size:
561.44 KB
Format:
Adobe Portable Document Format
Description:
Article
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: