Efficient transduction of pancreas tissue slices with genetically encoded calcium integrators

Date
2025-03-25
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
bioRxiv
Can't use the file because of accessibility barriers? Contact us with the title of the item, permanent link, and specifics of your accommodation need.
Abstract

This study combines live pancreas tissue slices with adenoviral transduction of the Calcium Modulated Photoactivatable Ratiometric Integrator 2 (CaMPARI2) biosensor for high-throughput analysis of islet calcium responses. Pancreas slices preserve islets within their native microenvironment, adding tissue context to the study of islet function and pathology. A key challenge of the pancreas slice model has been efficient transgene delivery while maintaining viability and function. Here, we demonstrate a robust adenoviral gene delivery approach using targeted and universal promoters. By transducing slices with CaMPARI2 and applying 405 nm photoconverting light, we permanently marked glucose-induced calcium activity across entire islet populations while preserving the in situ tissue context. Applied to nPOD donor tissues, including from individuals with type 1 diabetes, type 2 diabetes, and non-diabetic controls, this approach demonstrated glucose responsive CaMPARI2 labeling that correlated with insulin secretion. Integrating CaMPARI2 with pancreas slices enables multiplexed analyses, linking a functional readout with spatial context through immunostaining or gene expression to advance understanding of human islet behavior.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Lazimi CS, Stis AE, Panzer JK, et al. Efficient transduction of pancreas tissue slices with genetically encoded calcium integrators. Preprint. bioRxiv. 2025;2025.03.21.644659. Published 2025 Mar 25. doi:10.1101/2025.03.21.644659
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}