BERMUDA: a novel deep transfer learning method for single-cell RNA sequencing batch correction reveals hidden high-resolution cellular subtypes

dc.contributor.authorWang, Tongxin
dc.contributor.authorJohnson, Travis S.
dc.contributor.authorShao, Wei
dc.contributor.authorLu, Zixiao
dc.contributor.authorHelm, Bryan R.
dc.contributor.authorZhang, Jie
dc.contributor.authorHuang, Kun
dc.contributor.departmentMedical and Molecular Genetics, School of Medicineen_US
dc.date.accessioned2019-10-14T17:46:49Z
dc.date.available2019-10-14T17:46:49Z
dc.date.issued2019-08-12
dc.description.abstractTo fully utilize the power of single-cell RNA sequencing (scRNA-seq) technologies for identifying cell lineages and bona fide transcriptional signals, it is necessary to combine data from multiple experiments. We present BERMUDA (Batch Effect ReMoval Using Deep Autoencoders), a novel transfer-learning-based method for batch effect correction in scRNA-seq data. BERMUDA effectively combines different batches of scRNA-seq data with vastly different cell population compositions and amplifies biological signals by transferring information among batches. We demonstrate that BERMUDA outperforms existing methods for removing batch effects and distinguishing cell types in multiple simulated and real scRNA-seq datasets.en_US
dc.identifier.citationWang, T., Johnson, T. S., Shao, W., Lu, Z., Helm, B. R., Zhang, J., & Huang, K. (2019). BERMUDA: a novel deep transfer learning method for single-cell RNA sequencing batch correction reveals hidden high-resolution cellular subtypes. Genome biology, 20(1), 165. doi:10.1186/s13059-019-1764-6en_US
dc.identifier.urihttps://hdl.handle.net/1805/21151
dc.language.isoen_USen_US
dc.publisherBioMed Centralen_US
dc.relation.isversionof10.1186/s13059-019-1764-6en_US
dc.relation.journalGenome Biologyen_US
dc.rightsCreative Commons Attribution
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.sourcePMCen_US
dc.subjectSingle cellen_US
dc.subjectRNA-seqen_US
dc.subjectBatch effecten_US
dc.subjectTransfer learningen_US
dc.subjectAutoencoderen_US
dc.titleBERMUDA: a novel deep transfer learning method for single-cell RNA sequencing batch correction reveals hidden high-resolution cellular subtypesen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
13059_2019_Article_1764.pdf
Size:
1.91 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: