Micro-computed tomography assisted distal femur metaphyseal blunt punch compression for determining trabecular bone strength in mice

Date
2016-05-03
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Elsevier
Abstract

Shorter generation time and the power of genetic manipulation make mice an ideal model system to study bone biology as well as bone diseases. However their small size presents a challenge to perform strength measurements, particularly of the weight-bearing cancellous bone in the murine long bones. We recently developed an improved method to measure the axial compressive strength of the cancellous bone in the distal femur metaphysis in mice. Transverse micro-computed tomography image slices that are 7µm thick were used to locate the position where the epiphysis-metaphysis transition occurs. This enabled the removal of the distal femur epiphysis at the exact transition point exposing the full extent of metaphyseal trabecular bone, allowing more accurate and consistent measurement of its strength. When applied to a murine model system consisting of five month old male wild-type (WT) and Ca(2+)/calmodulin dependent protein kinase kinase 2 (CaMKK2) knockout (KO) Camkk2(-/-) mice that possess recorded differences in trabecular bone volume, data collected using this method showed good correlation between bone volume fraction and strength of trabecular bone. In combination with micro-computed tomography and histology, this method will provide a comprehensive and consistent assessment of the microarchitecture and tissue strength of the cancellous bone in murine mouse models.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Sankar, U., Pritchard, Z. J., & Voor, M. J. (2016). Micro-computed tomography assisted distal femur metaphyseal blunt punch compression for determining trabecular bone strength in mice. Journal of Biomechanics, 49(7), 1233–1237. http://doi.org/10.1016/j.jbiomech.2016.02.040
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Journal of Biomechanics
Rights
Publisher Policy
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}