AI in Medical Imaging Informatics: Current Challenges and Future Directions

dc.contributor.authorPanayides, Andreas S.
dc.contributor.authorAmini, Amir
dc.contributor.authorFilipovic, Nenad D.
dc.contributor.authorSharma, Ashish
dc.contributor.authorTsaftaris, Sotirios A.
dc.contributor.authorYoung, Alistair
dc.contributor.authorForan, David
dc.contributor.authorDo, Nhan
dc.contributor.authorGolemati, Spyretta
dc.contributor.authorKurc, Tahsin
dc.contributor.authorHuang, Kun
dc.contributor.authorNikita, Konstantina S.
dc.contributor.authorVeasey, Ben P.
dc.contributor.authorZervakis, Michalis
dc.contributor.authorSaltz, Joel H.
dc.contributor.authorPattichis, Constantinos S.
dc.contributor.departmentBiostatistics & Health Data Science, School of Medicineen_US
dc.date.accessioned2023-04-03T19:13:05Z
dc.date.available2023-04-03T19:13:05Z
dc.date.issued2020-07
dc.description.abstractThis paper reviews state-of-the-art research solutions across the spectrum of medical imaging informatics, discusses clinical translation, and provides future directions for advancing clinical practice. More specifically, it summarizes advances in medical imaging acquisition technologies for different modalities, highlighting the necessity for efficient medical data management strategies in the context of AI in big healthcare data analytics. It then provides a synopsis of contemporary and emerging algorithmic methods for disease classification and organ/ tissue segmentation, focusing on AI and deep learning architectures that have already become the de facto approach. The clinical benefits of in-silico modelling advances linked with evolving 3D reconstruction and visualization applications are further documented. Concluding, integrative analytics approaches driven by associate research branches highlighted in this study promise to revolutionize imaging informatics as known today across the healthcare continuum for both radiology and digital pathology applications. The latter, is projected to enable informed, more accurate diagnosis, timely prognosis, and effective treatment planning, underpinning precision medicine.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationPanayides AS, Amini A, Filipovic ND, et al. AI in Medical Imaging Informatics: Current Challenges and Future Directions. IEEE J Biomed Health Inform. 2020;24(7):1837-1857. doi:10.1109/JBHI.2020.2991043en_US
dc.identifier.urihttps://hdl.handle.net/1805/32197
dc.language.isoen_USen_US
dc.publisherIEEEen_US
dc.relation.isversionof10.1109/JBHI.2020.2991043en_US
dc.relation.journalIEEE Journal of Biomedical and Health Informaticsen_US
dc.rightsPublisher Policyen_US
dc.sourcePMCen_US
dc.subjectMedical imagingen_US
dc.subjectImage analysisen_US
dc.subjectImage classificationen_US
dc.subjectImage processingen_US
dc.subjectImage segmentationen_US
dc.subjectImage visualizationen_US
dc.subjectIntegrative analyticsen_US
dc.subjectMachine learningen_US
dc.subjectDeep learningen_US
dc.subjectBig dataen_US
dc.titleAI in Medical Imaging Informatics: Current Challenges and Future Directionsen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
nihms-1742605.pdf
Size:
954.11 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: