Synthesis and preliminary biological evaluation of radiolabeled 5-BDBD analogs as new candidate PET radioligands for P2X4 receptor

Date
2017-07
Language
English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Elsevier
Abstract

P2X4 receptor has become an interesting molecular target for treatment and PET imaging of neuroinflammation and associated brain diseases such as Alzheimer’s disease. This study reports the first design, synthesis, radiolabeling and biological evaluation of new candidate PET P2X4 receptor radioligands using 5-BDBD, a specific P2X4 receptor antagonist, as a scaffold. 5-(3-Hydroxyphenyl)-1-[11C]methyl-1,3-dihydro-2H-benzofuro[3,2-e][1,4]diazepin-2-one (N-[11C]Me-5-BDBD analog, [11C]9) and 5-(3-Bromophenyl)-1-[11C]methyl-1,3-dihydro-2H-benzofuro[3,2-e][1,4]diazepin-2-one (N-[11C]Me-5-BDBD, [11C]8c) were prepared from their corresponding desmethylated precursors with [11C]CH3OTf through N-[11C]methylation and isolated by HPLC combined with SPE in 30–50% decay corrected radiochemical yields with 370–1110 GBq/µmol specific activity at EOB. 5-(3-[18F]Fluorophenyl)-1,3-dihydro-2H-benzofuro[3,2-e][1,4]diazepin-2-one ([18F]F-5-BDBD, [18F]5a) and 5-(3-(2-[18F]fluoroethoxy)phenyl)-1,3-dihydro-2H-benzofuro[3,2-e][1,4]diazepin-2-one ([18F]FE-5-BDBD, [18F]11) were prepared from their corresponding nitro- and tosylated precursors by nucleophilic substitution with K[18F]F/Kryptofix 2.2.2 and isolated by HPLC-SPE in 5–25% decay corrected radiochemical yields with 111–740 GBq/µmol specific activity at EOB. The preliminary biological evaluation of radiolabeled 5-BDBD analogs indicated these new radioligands have similar biological activity with their parent compound 5-BDBD.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Wang, M., Gao, M., Meyer, J. A., Peters, J. S., Zarrinmayeh, H., Territo, P. R., … Zheng, Q.-H. (2017). Synthesis and preliminary biological evaluation of radiolabeled 5-BDBD analogs as new candidate PET radioligands for P2X4 receptor. Bioorganic & Medicinal Chemistry. https://doi.org/10.1016/j.bmc.2017.05.031
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Bioorganic & Medicinal Chemistry
Rights
Publisher Policy
Source
Author
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}