Foreground discovery in streaming videos with dynamic construction of content graphs

dc.contributor.authorFarhand, Sepehr
dc.contributor.authorTsechpenakis, Gavriil
dc.contributor.departmentComputer and Information Science, School of Science
dc.date.accessioned2024-01-08T19:38:06Z
dc.date.available2024-01-08T19:38:06Z
dc.date.issued2023-01
dc.description.abstractWe study the problem of unknown foreground discovery in image streaming scenarios, where no prior information about the dynamic scene is assumed. Contrary to existing co-segmentation principles where the entire dataset is given, in streams new information emerges as content appears and disappears continually. Any object classes to be observed in the scene are unknown, therefore no detection model can be trained for the specific class set. We also assume there is no available repository of trained features from convolutional neural nets, i.e., transfer learning is not applicable. We focus on the progressive discovery of foreground, which may or may not correspond to contextual objects of interest, depending on the camera trajectory, or, in general, the perceived motion. Without any form of supervision, we construct in a bottom up fashion dynamic graphs that capture region saliency and relative topology. Such graphs are continually updated over time, and along with occlusion information, as fundamental property of the foreground–background relationship, foreground is computed for each frame of the stream. We validate our method using indoor and outdoor scenes of varying complexity with respect to content, objects motion, camera trajectory, and occlusions.
dc.eprint.versionAuthor's manuscript
dc.identifier.citationFarhand, S., & Tsechpenakis, G. (2023). Foreground discovery in streaming videos with dynamic construction of content graphs. Computer Vision and Image Understanding, 227, 103620. https://doi.org/10.1016/j.cviu.2022.103620
dc.identifier.urihttps://hdl.handle.net/1805/37713
dc.language.isoen_US
dc.publisherElsevier
dc.relation.isversionof10.1016/j.cviu.2022.103620
dc.relation.journalComputer Vision and Image Understanding
dc.rightsPublisher Policy
dc.sourceSSRN
dc.subjectimage streaming
dc.subjectforeground
dc.subjectregion saliency
dc.subjectrelative topology
dc.titleForeground discovery in streaming videos with dynamic construction of content graphs
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Farhand2023Foreground-preprint.pdf
Size:
13.6 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: