Monodromy of the equivariant quantum differential equation of the cotangent bundle of a Grassmannian
dc.contributor.author | Tarasov, Vitaly | |
dc.contributor.author | Varchenko , Alexander | |
dc.contributor.department | Mathematical Sciences, School of Science | |
dc.date.accessioned | 2025-03-28T19:56:26Z | |
dc.date.available | 2025-03-28T19:56:26Z | |
dc.date.issued | 2024 | |
dc.description.abstract | We describe the monodromy of the equivariant quantum differential equation of the cotangent bundle of a Grassmannian in terms of the equivariant K-theory algebra of the cotangent bundle. This description is based on the hypergeometric integral representations for solutions of the equivariant quantum differential equation. We identify the space of solutions with the space of the equivariant K-theory algebra of the cotangent bundle. In particular, we show that for any element of the monodromy group, all entries of its matrix in the standard basis of the equivariant K-theory algebra of the cotangent bundle are Laurent polynomials with integer coefficients in the exponentiated equivariant parameters. | |
dc.eprint.version | Author's manuscript | |
dc.identifier.citation | Tarasov, V., & Varchenko, A. (2024). Monodromy of the equivariant quantum differential equation of the cotangent bundle of a Grassmannian. Selecta Mathematica, 30(2), 25. https://doi.org/10.1007/s00029-024-00916-8 | |
dc.identifier.uri | https://hdl.handle.net/1805/46642 | |
dc.language.iso | en | |
dc.publisher | Springer Nature | |
dc.relation.isversionof | 10.1007/s00029-024-00916-8 | |
dc.relation.journal | Selecta Mathematica | |
dc.rights | Publisher Policy | |
dc.source | ArXiv | |
dc.subject | Grassmannian | |
dc.subject | quantum differential equation | |
dc.subject | q-hypergeometric solution | |
dc.title | Monodromy of the equivariant quantum differential equation of the cotangent bundle of a Grassmannian | |
dc.type | Article |