Characterizing the Role of Brain Derived Neurotrophic Factor Genetic Variation in Alzheimer’s Disease Neurodegeneration

Date
2013-09-26
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Public Library of Science
Can't use the file because of accessibility barriers? Contact us with the title of the item, permanent link, and specifics of your accommodation need.
Abstract

There is accumulating evidence that neurotrophins, like brain-derived neurotrophic factor (BDNF), may impact aging and Alzheimer's Disease. However, traditional genetic association studies have not found a clear relationship between BDNF and AD. Our goal was to test whether BDNF single nucleotide polymorphisms (SNPs) impact Alzheimer's Disease-related brain imaging and cognitive markers of disease. We completed an imaging genetics study on 645 Alzheimer's Disease Neuroimaging Initiative participants (ND=175, MCI=316, AD=154) who had cognitive, brain imaging, and genetics data at baseline and a subset of those with brain imaging data at two years. Samples were genotyped using the Illumina Human610-Quad BeadChip. 13 SNPs in BDNF were identified in the dataset following quality control measures (rs6265(Val66Met), rs12273363, rs11030094, rs925946, rs1050187, rs2203877, rs11030104, rs11030108, rs10835211, rs7934165, rs908867, rs1491850, rs1157459). We analyzed a subgroup of 8 SNPs that were in low linkage disequilibrium with each other. Automated brain morphometric measures were available through ADNI investigators, and we analyzed baseline cognitive scores, hippocampal and whole brain volumes, and rates of hippocampal and whole brain atrophy and rates of change in the ADAS-Cog over one and two years. Three out of eight BDNF SNPs analyzed were significantly associated with measures of cognitive decline (rs1157659, rs11030094, rs11030108). No SNPs were significantly associated with baseline brain volume measures, however six SNPs were significantly associated with hippocampal and/or whole brain atrophy over two years (rs908867, rs11030094, rs6265, rs10501087, rs1157659, rs1491850). We also found an interaction between the BDNF Val66Met SNP and age with whole brain volume. Our imaging-genetics analysis in a large dataset suggests that while BDNF genetic variation is not specifically associated with a diagnosis of AD, it appears to play a role in AD-related brain neurodegeneration.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Honea RA, Cruchaga C, Perea RD, et al. Characterizing the role of brain derived neurotrophic factor genetic variation in Alzheimer's disease neurodegeneration. PLoS One. 2013;8(9):e76001. Published 2013 Sep 26. doi:10.1371/journal.pone.0076001
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
PLoS One
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}