In vivo reprogramming of NG2 glia enables adult neurogenesis and functional recovery following spinal cord injury

Date
2021
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Cell Press
Abstract

Adult neurogenesis plays critical roles in maintaining brain homeostasis and responding to neurogenic insults. However, the adult mammalian spinal cord lacks an intrinsic capacity for neurogenesis. Here we show that spinal cord injury (SCI) unveils a latent neurogenic potential of NG2+ glial cells, which can be exploited to produce new neurons and promote functional recovery after SCI. Although endogenous SOX2 is required for SCI-induced transient reprogramming, ectopic SOX2 expression is necessary and sufficient to unleash the full neurogenic potential of NG2 glia. Ectopic SOX2-induced neurogenesis proceeds through an expandable ASCL1+ progenitor stage and generates excitatory and inhibitory propriospinal neurons, which make synaptic connections with ascending and descending spinal pathways. Importantly, SOX2-mediated reprogramming of NG2 glia reduces glial scarring and promotes functional recovery after SCI. These results reveal a latent neurogenic potential of somatic glial cells, which can be leveraged for regenerative medicine.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Tai W, Wu W, Wang LL, et al. In vivo reprogramming of NG2 glia enables adult neurogenesis and functional recovery following spinal cord injury. Cell Stem Cell. 2021;28(5):923-937.e4. doi:10.1016/j.stem.2021.02.009
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Cell Stem Cell
Rights
Publisher Policy
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}