Identification of a functional interaction of HMGB1 with Receptor for Advanced Glycation End-products in a model of neuropathic pain

dc.contributor.authorAllette, Yohance M.
dc.contributor.authorDue, Michael R.
dc.contributor.authorWilson, Sarah M.
dc.contributor.authorFeldman, Polina
dc.contributor.authorRipsch, Matthew S.
dc.contributor.authorKhanna, Rajesh
dc.contributor.authorWhite, Fletcher A.
dc.contributor.departmentDepartment of Anesthesia, IU School of Medicineen_US
dc.date.accessioned2016-10-12T18:43:12Z
dc.date.available2016-10-12T18:43:12Z
dc.date.issued2014-11
dc.description.abstractRecent studies indicate that the release of high mobility group box 1 (HMGB1) following nerve injury may play a central role in the pathogenesis of neuropathic pain. HMGB1 is known to influence cellular responses within the nervous system via two distinct receptor families; the Receptor for Advanced Glycation End-products (RAGE) and Toll-like receptors (TLRs). The degree to which HMGB1 activates a receptor is thought to be dependent upon the oxidative state of the ligand, resulting in the functional isoforms of all-thiol HMGB1 (at-HMGB1) acting through RAGE, and disufide HMGB1 (ds-HMGB1) interacting with TLR4. Though it is known that dorsal root ganglia (DRG) sensory neurons exposed to HMGB1 and TLR4 agonists can influence excitation, the degree to which at-HMGB1 signaling through neuronal RAGE contributes to neuropathic pain is unknown. Here we demonstrate that at-HMGB1 activation of nociceptive neurons is dependent on RAGE and not TLR4. To distinguish the possible role of RAGE on neuropathic pain, we characterized the changes in RAGE mRNA expression up to one month after tibial nerve injury (TNI). RAGE mRNA expression in lumbar dorsal root ganglion (DRG) is substantially increased by post-injury day (PID) 28 when compared with sham injured rodents. Protein expression at PID28 confirms this injury-induced event in the DRG. Moreover, a single exposure to monoclonal antibody to RAGE (RAGE Ab) failed to abrogate pain behavior at PID 7, 14 and 21. However, RAGE Ab administration produced reversal of mechanical hyperalgesia on PID28. Thus, at-HMGB1 activation through RAGE may be responsible for sensory neuron sensitization and mechanical hyperalgesia associated with chronic neuropathic pain states.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationAllette, Y. M., Due, M. R., Wilson, S. M., Feldman, P., Ripsch, M. S., Khanna, R., & White, F. A. (2014). Identification of a functional interaction of HMGB1 with Receptor for Advanced Glycation End-products in a model of neuropathic pain. Brain, Behavior, and Immunity, 42, 169–177. http://doi.org/10.1016/j.bbi.2014.06.199en_US
dc.identifier.issn1090-2139en_US
dc.identifier.urihttps://hdl.handle.net/1805/11166
dc.language.isoen_USen_US
dc.publisherElsevieren_US
dc.relation.isversionof10.1016/j.bbi.2014.06.199en_US
dc.relation.journalBrain, Behavior, and Immunityen_US
dc.rightsPublisher Policyen_US
dc.sourcePMCen_US
dc.subjectAdvanced Glycosylation End Product-Specific Receptoren_US
dc.subjectmetabolismen_US
dc.subjectHMGB1 Proteinen_US
dc.subjectHyperalgesiaen_US
dc.subjectNeuralgiaen_US
dc.subjectNeuronsen_US
dc.titleIdentification of a functional interaction of HMGB1 with Receptor for Advanced Glycation End-products in a model of neuropathic painen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
nihms623524.pdf
Size:
647.71 KB
Format:
Adobe Portable Document Format
Description:
Author's manuscript
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.88 KB
Format:
Item-specific license agreed upon to submission
Description: