Differential Stem and Progenitor Cell Trafficking by Prostaglandin E2

dc.contributor.authorHoggatt, Jonathan
dc.contributor.authorMohammad, Khalid S.
dc.contributor.authorSingh, Pratibha
dc.contributor.authorHoggatt, Amber F.
dc.contributor.authorChitteti, Brahmananda Reddy
dc.contributor.authorSpeth, Jennifer M.
dc.contributor.authorHu, Peirong
dc.contributor.authorPoteat, Bradley A.
dc.contributor.authorStilger, Kayla N.
dc.contributor.authorFerraro, Francesca
dc.contributor.authorSilberstein, Lev
dc.contributor.authorWong, Frankie K.
dc.contributor.authorFarag, Sherif S.
dc.contributor.authorCzader, Magdalena
dc.contributor.authorMilne, Ginger L.
dc.contributor.authorBreyer, Richard M.
dc.contributor.authorSerezani, Carlos H.
dc.contributor.authorScadden, David T.
dc.contributor.authorGuise, Theresa
dc.contributor.authorSrour, Edward F.
dc.contributor.authorPelus, Louis M.
dc.contributor.departmentMedicine, School of Medicine
dc.date.accessioned2025-05-20T14:02:02Z
dc.date.available2025-05-20T14:02:02Z
dc.date.issued2013
dc.description.abstractTo maintain lifelong production of blood cells, haematopoietic stem cells (HSCs) are tightly regulated by inherent programs and extrinsic regulatory signals received from their microenvironmental niche. Long-term repopulating HSCs reside in several, perhaps overlapping, niches that produce regulatory molecules and signals necessary for homeostasis and for increased output after stress or injury. Despite considerable advances in the specific cellular or molecular mechanisms governing HSC-niche interactions, little is known about the regulatory function in the intact mammalian haematopoietic niche. Recently, we and others described a positive regulatory role for prostaglandin E2 (PGE2) on HSC function ex vivo. Here we show that inhibition of endogenous PGE2 by non-steroidal anti-inflammatory drug (NSAID) treatment in mice results in modest HSC egress from the bone marrow. Surprisingly, this was independent of the SDF-1-CXCR4 axis implicated in stem-cell migration. Stem and progenitor cells were found to have differing mechanisms of egress, with HSC transit to the periphery dependent on niche attenuation and reduction in the retentive molecule osteopontin. Haematopoietic grafts mobilized with NSAIDs had superior repopulating ability and long-term engraftment. Treatment of non-human primates and healthy human volunteers confirmed NSAID-mediated egress in other species. PGE2 receptor knockout mice demonstrated that progenitor expansion and stem/progenitor egress resulted from reduced E-prostanoid 4 (EP4) receptor signalling. These results not only uncover unique regulatory roles for EP4 signalling in HSC retention in the niche, but also define a rapidly translatable strategy to enhance transplantation therapeutically.
dc.eprint.versionAuthor's manuscript
dc.identifier.citationHoggatt J, Mohammad KS, Singh P, et al. Differential stem- and progenitor-cell trafficking by prostaglandin E2. Nature. 2013;495(7441):365-369. doi:10.1038/nature11929
dc.identifier.urihttps://hdl.handle.net/1805/48286
dc.language.isoen_US
dc.publisherSpringer Nature
dc.relation.isversionof10.1038/nature11929
dc.relation.journalNature
dc.rightsPublisher Policy
dc.sourcePMC
dc.subjectNSAID
dc.subjectStem cell
dc.subjectMobilization
dc.subjectNiche
dc.subjectOsteopontin
dc.subjectProstaglandin
dc.subjectHematopoiesis
dc.titleDifferential Stem and Progenitor Cell Trafficking by Prostaglandin E2
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Hoggatt2013Differential-AAM.pdf
Size:
1.64 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.04 KB
Format:
Item-specific license agreed upon to submission
Description: