Bethe Ansatz Equations for Orthosymplectic Lie Superalgebras and Self-dual Superspaces

dc.contributor.authorLu, Kang
dc.contributor.authorMukhin, Evgeny
dc.contributor.departmentMathematical Sciences, School of Scienceen_US
dc.date.accessioned2023-02-17T21:23:23Z
dc.date.available2023-02-17T21:23:23Z
dc.date.issued2021-12
dc.description.abstractWe study solutions of the Bethe ansatz equations associated to the orthosymplectic Lie superalgebras $$\mathfrak {osp}_{2m+1|2n}$$and $$\mathfrak {osp}_{2m|2n}$$. Given a solution, we define a reproduction procedure and use it to construct a family of new solutions which we call a population. To each population we associate a symmetric rational pseudo-differential operator $$\mathcal R$$. Under some technical assumptions, we show that the superkernel W of $$\mathcal R$$is a self-dual superspace of rational functions, and the population is in a canonical bijection with the variety of isotropic full superflags in W and with the set of symmetric complete factorizations of $$\mathcal R$$. In particular, our results apply to the case of even Lie algebras of type D$${}_m$$corresponding to $$\mathfrak {osp}_{2m|0}=\mathfrak {so}_{2m}$$.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationLu, K., & Mukhin, E. (2021). Bethe Ansatz Equations for Orthosymplectic Lie Superalgebras and Self-dual Superspaces. Annales Henri Poincaré, 22(12), 4087–4130. https://doi.org/10.1007/s00023-021-01091-8en_US
dc.identifier.issn1424-0637, 1424-0661en_US
dc.identifier.urihttps://hdl.handle.net/1805/31298
dc.language.isoen_USen_US
dc.publisherSpringeren_US
dc.relation.isversionof10.1007/s00023-021-01091-8en_US
dc.relation.journalAnnales Henri Poincaréen_US
dc.rightsPublisher Policyen_US
dc.sourceArXiven_US
dc.subjectBethe ansatz equationsen_US
dc.subjectcanonical bijectionen_US
dc.subjectorthosymplectic Lie superalgebrasen_US
dc.titleBethe Ansatz Equations for Orthosymplectic Lie Superalgebras and Self-dual Superspacesen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Lu2021Bethe-AAM.pdf
Size:
451.4 KB
Format:
Adobe Portable Document Format
Description:
Article
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: