A Flexible Near-Field Biosensor for Multisite Arterial Blood Flow Detection

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2022-11-01
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
MDPI
Abstract

Modern wearable devices show promising results in terms of detecting vital bodily signs from the wrist. However, there remains a considerable need for a device that can conform to the human body's variable geometry to accurately detect those vital signs and to understand health better. Flexible radio frequency (RF) resonators are well poised to address this need by providing conformable bio-interfaces suitable for different anatomical locations. In this work, we develop a compact wearable RF biosensor that detects multisite hemodynamic events due to pulsatile blood flow through noninvasive tissue-electromagnetic (EM) field interaction. The sensor consists of a skin patch spiral resonator and a wearable transceiver. During resonance, the resonator establishes a strong capacitive coupling with layered dielectric tissues due to impedance matching. Therefore, any variation in the dielectric properties within the near-field of the coupled system will result in field perturbation. This perturbation also results in RF carrier modulation, transduced via a demodulator in the transceiver unit. The main elements of the transceiver consist of a direct digital synthesizer for RF carrier generation and a demodulator unit comprised of a resistive bridge coupled with an envelope detector, a filter, and an amplifier. In this work, we build and study the sensor at the radial artery, thorax, carotid artery, and supraorbital locations of a healthy human subject, which hold clinical significance in evaluating cardiovascular health. The carrier frequency is tuned at the resonance of the spiral resonator, which is 34.5 ± 1.5 MHz. The resulting transient waveforms from the demodulator indicate the presence of hemodynamic events, i.e., systolic upstroke, systolic peak, dicrotic notch, and diastolic downstroke. The preliminary results also confirm the sensor's ability to detect multisite blood flow events noninvasively on a single wearable platform.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Mohammed N, Cluff K, Sutton M, et al. A Flexible Near-Field Biosensor for Multisite Arterial Blood Flow Detection. Sensors (Basel). 2022;22(21):8389. Published 2022 Nov 1. doi:10.3390/s22218389
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Sensors
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}