An Aqueous Media Based Approach for the Preparation of a Biosensor Platform Composed of Graphene Oxide and Pt-Black

Date
2012
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Elsevier
Can't use the file because of accessibility barriers? Contact us with the title of the item, permanent link, and specifics of your accommodation need.
Abstract

The combination of Pt nanoparticles and graphene was more effective in enhancing biosensing than either nanomaterial alone according to previous reports. Based on the structural similarities between water soluble graphene oxide (GrO(x)) and graphene, we report the fabrication of an aqueous media based GrO(x)/Pt-black nanocomposite for biosensing enhancement. In this approach GrO(x) acted as a nanoscale molecular template for the electrodeposition of Pt-black, an amorphously nanopatterned isoform of platinum metal. Scanning electron microscopy (SEM) images and energy-dispersive X-ray spectroscopy (EDS) showed that Pt-black was growing along GrO(x). The effective surface area and electrocatalytic activity towards H(2)O(2) oxidation of GrO(x)/Pt-black microelectrodes were significantly higher than for Pt-black microelectrodes. When used to prepare a bio-nanocomposite based on protein functionalization with the enzyme glucose oxidase (GOx), the GrO(x)/Pt-black microbiosensors exhibited improved sensitivity over the Pt-black microbiosensors. This suggested that the GrO(x)/Pt-black nanocomposite facilitated an increase in electron transfer, and/or minimized mass transport limitations as compared to Pt-black used alone. Glucose microbiosensors based on GrO(x)/Pt-black exhibited high sensitivity (465.9 ± 48.0 nA/mM), a low detection limit of 1 μM, a linear response range of 1 μM-2mM, and response time of ≈ 4s. Additionally the sensor was stable and highly selective over potential interferents.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Shi J, Zhang H, Snyder A, et al. An aqueous media based approach for the preparation of a biosensor platform composed of graphene oxide and Pt-black. Biosens Bioelectron. 2012;38(1):314-320. doi:10.1016/j.bios.2012.06.007
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Biosensors & Bioelectronics
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}