Longitudinal Beta-Binomial Modeling using GEE for Over-Dispersed Binomial Data

dc.contributor.authorWu, Hongqian
dc.contributor.authorZhang, Ying
dc.contributor.authorLong, Jeffrey D.
dc.contributor.departmentDepartment of Biostatistics, School of Public Healthen_US
dc.date.accessioned2017-09-21T18:26:12Z
dc.date.available2017-09-21T18:26:12Z
dc.date.issued2017-03
dc.description.abstractLongitudinal binomial data are frequently generated from multiple questionnaires and assessments in various scientific settings for which the binomial data are often overdispersed. The standard generalized linear mixed effects model may result in severe underestimation of standard errors of estimated regression parameters in such cases and hence potentially bias the statistical inference. In this paper, we propose a longitudinal beta-binomial model for overdispersed binomial data and estimate the regression parameters under a probit model using the generalized estimating equation method. A hybrid algorithm of the Fisher scoring and the method of moments is implemented for computing the method. Extensive simulation studies are conducted to justify the validity of the proposed method. Finally, the proposed method is applied to analyze functional impairment in subjects who are at risk of Huntington disease from a multisite observational study of prodromal Huntington disease.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationWu, H., Zhang, Y., & Long, J. D. (2017). Longitudinal beta‐binomial modeling using GEE for overdispersed binomial data. Statistics in Medicine, 36(6), 1029–1040. https://doi.org/10.1002/sim.7191en_US
dc.identifier.urihttps://hdl.handle.net/1805/14148
dc.language.isoenen_US
dc.publisherWileyen_US
dc.relation.isversionof10.1002/sim.7191en_US
dc.relation.journalStatistics in Medicineen_US
dc.rightsPublisher Policyen_US
dc.sourceAuthoren_US
dc.subjectbeta-binomial modelen_US
dc.subjectHuntington Diseaseen_US
dc.subjectgeneralized estimating equationen_US
dc.titleLongitudinal Beta-Binomial Modeling using GEE for Over-Dispersed Binomial Dataen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
wu-2017-longitudinal.pdf
Size:
270.27 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.88 KB
Format:
Item-specific license agreed upon to submission
Description: