Protein control of membrane and organelle dynamics: Insights from the divergent eukaryote Toxoplasma gondii

Date
2022
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Elsevier
Abstract

Integral membrane protein complexes control key cellular functions in eukaryotes by defining membrane-bound spaces within organelles and mediating inter-organelles contacts. Despite the critical role of membrane complexes in cell biology, most of our knowledge is from a handful of model systems, primarily yeast and mammals, while a full functional and evolutionary understanding remains incomplete without the perspective from a broad range of divergent organisms. Apicomplexan parasites are single-cell eukaryotes whose survival depends on organelle compartmentalisation and communication. Studies of a model apicomplexan, Toxoplasma gondii, reveal unexpected divergence in the composition and function of complexes previously considered broadly conserved, such as the mitochondrial ATP synthase and the tethers mediating ER-mitochondria membrane contact sites. Thus, Toxoplasma joins the repertoire of divergent model eukaryotes whose research completes our understanding of fundamental cell biology.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Ovciarikova J, Oliveira Souza RO, Arrizabalaga G, Sheiner L. Protein control of membrane and organelle dynamics: Insights from the divergent eukaryote Toxoplasma gondii. Curr Opin Cell Biol. 2022;76:102085. doi:10.1016/j.ceb.2022.102085
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Current Opinion in Cell Biology
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}