Towards In-baggage Suspicious Object Detection Using Commodity WiFi

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2018
Language
English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
IEEE
Abstract

The growing needs of public safety urgently require scalable and low-cost techniques on detecting dangerous objects (e.g., lethal weapons, homemade-bombs, explosive chemicals) hidden in baggage. Traditional baggage check involves either high manpower for manual examinations or expensive and specialized instruments, such as X-ray and CT. As such, many public places (i.e., museums and schools) that lack of strict security check are exposed to high risk. In this work, we propose to utilize the fine-grained channel state information (CSI) from off-the-shelf WiFi to detect suspicious objects that are suspected to be dangerous (i.e., defined as any metal and liquid object) without penetrating into the user's privacy through physically opening the baggage. Our suspicious object detection system significantly reduces the deployment cost and is easy to set up in public venues. Towards this end, our system is realized by two major components: it first detects the existence of suspicious objects and identifies the dangerous material type based on the reconstructed CSI complex value (including both amplitude and phase information); it then determines the risk level of the object by examining the object's dimension (i.e., liquid volume and metal object's shape) based on the reconstructed CSI complex of the signals reflected by the object. Extensive experiments are conducted with 15 metal and liquid objects and 6 types of bags in a 6-month period. The results show that our system can detect over 95% suspicious objects in different types of bags and successfully identify 90% dangerous material types. In addition, our system can achieve the average errors of 16ml and 0.5cm when estimating the volume of liquid and shape (i.e., width and height) of metal objects, respectively.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Wang, C., Liu, J., Chen, Y., Liu, H., & Wang, Y. (2018). Towards In-baggage Suspicious Object Detection Using Commodity WiFi. 2018 IEEE Conference on Communications and Network Security (CNS), 1–9. https://doi.org/10.1109/CNS.2018.8433142
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
2018 IEEE Conference on Communications and Network Security
Source
Author
Alternative Title
Type
Conference proceedings
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}