Critical role of mitochondrial aldehyde dehydrogenase 2 in acrolein sequestering in rat spinal cord injury

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2022
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Wolters Kluwer
Abstract

Lipid peroxidation-derived aldehydes, such as acrolein, the most reactive aldehyde, have emerged as key culprits in sustaining post-spinal cord injury (SCI) secondary pathologies leading to functional loss. Strong evidence suggests that mitochondrial aldehyde dehydrogenase-2 (ALDH2), a key oxidoreductase and powerful endogenous anti-aldehyde machinery, is likely important for protecting neurons from aldehydes-mediated degeneration. Using a rat model of spinal cord contusion injury and recently discovered ALDH2 activator (Alda-1), we planned to validate the aldehyde-clearing and neuroprotective role of ALDH2. Over an acute 2 day period post injury, we found that ALDH2 expression was significantly lowered post-SCI, but not so in rats given Alda-1. This lower enzymatic expression may be linked to heightened acrolein-ALDH2 adduction, which was revealed in co-immunoprecipitation experiments. We have also found that administration of Alda-1 to SCI rats significantly lowered acrolein in the spinal cord, and reduced cyst pathology. In addition, Alda-1 treatment also resulted in significant improvement of motor function and attenuated post-SCI mechanical hypersensitivity up to 28 days post-SCI. Finally, ALDH2 was found to play a critical role in in vitro protection of PC12 cells from acrolein exposure. It is expected that the outcome of this study will broaden and enhance anti-aldehyde strategies in combating post-SCI neurodegeneration and potentially bring treatment to millions of SCI victims. All animal work was approved by Purdue Animal Care and Use Committee (approval No. 1111000095) on January 1, 2021.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Herr SA, Shi L, Gianaris T, et al. Critical role of mitochondrial aldehyde dehydrogenase 2 in acrolein sequestering in rat spinal cord injury. Neural Regen Res. 2022;17(7):1505-1511. doi:10.4103/1673-5374.330613
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Neural Regeneration Research
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}