Impact of Spectral Resolution on Quantifying Cyanobacteria in Lakes and Reservoirs: A Machine-Learning Assessment

dc.contributor.authorZolfaghari, Kiana
dc.contributor.authorPahlevan, Nima
dc.contributor.authorBinding, Caren
dc.contributor.authorGurlin, Daniela
dc.contributor.authorSimis, Stefan G. H.
dc.contributor.authorRuiz Verdú, Antonio
dc.contributor.authorLi, Lin
dc.contributor.authorCrawford, Christopher J.
dc.contributor.authorVanderWoude, Andrea
dc.contributor.authorErrera, Reagan
dc.contributor.authorZastepa, Arthur
dc.contributor.authorDuguay, Claude R.
dc.contributor.departmentEarth Sciences, School of Scienceen_US
dc.date.accessioned2023-02-28T18:50:13Z
dc.date.available2023-02-28T18:50:13Z
dc.date.issued2022-10
dc.description.abstractCyanobacterial harmful algal blooms are an increasing threat to coastal and inland waters. These blooms can be detected using optical radiometers due to the presence of phycocyanin (PC) pigments. The spectral resolution of best-available multispectral sensors limits their ability to diagnostically detect PC in the presence of other photosynthetic pigments. To assess the role of spectral resolution in the determination of PC, a large ( N=905 ) database of colocated in situ radiometric spectra and PC are employed. We first examine the performance of selected widely used machine-learning (ML) models against that of benchmark algorithms for hyperspectral remote sensing reflectance ( Rrs ) spectra resampled to the spectral configuration of the Hyperspectral Imager for the Coastal Ocean (HICO) with a full-width at half-maximum (FWHM) of < 6 nm. Results show that the multilayer perceptron (MLP) neural network applied to HICO spectral configurations (median errors < 65%) outperforms other ML models. This model is subsequently applied to Rrs spectra resampled to the band configuration of existing satellite instruments and of the one proposed for the next Landsat sensor. These results confirm that employing MLP models to estimate PC from hyperspectral data delivers tangible improvements compared with retrievals from multispectral data and benchmark algorithms (with median errors between ∼73 % and 126%) and shows promise for developing a globally applicable cyanobacteria measurement approach.en_US
dc.eprint.versionFinal published versionen_US
dc.identifier.citationZolfaghari, K., Pahlevan, N., Binding, C., Gurlin, D., Simis, S. G. H., Verdú, A. R., Li, L., Crawford, C. J., Vanderwoude, A., Errera, R., Zastepa, A., & Duguay, C. R. (2022). Impact of Spectral Resolution on Quantifying Cyanobacteria in Lakes and Reservoirs: A Machine-Learning Assessment. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–20. https://doi.org/10.1109/TGRS.2021.3114635en_US
dc.identifier.urihttps://hdl.handle.net/1805/31528
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.isversionof10.1109/TGRS.2021.3114635en_US
dc.relation.journalIEEE Transactions on Geoscience and Remote Sensingen_US
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourcePublisheren_US
dc.subjectcyanobacteria harmful algal bloomen_US
dc.subjecthyperspectralen_US
dc.subjectmachine learningen_US
dc.titleImpact of Spectral Resolution on Quantifying Cyanobacteria in Lakes and Reservoirs: A Machine-Learning Assessmenten_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Zolfaghari2022Impact-CCBY.pdf
Size:
4.14 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: