Predicting Incident Heart Failure in Women With Machine Learning: The Women's Health Initiative Cohort

Date
2021
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Elsevier
Abstract

Background: Heart failure (HF) is a leading cause of cardiac morbidity among women, whose risk factors differ from those in men. We used machine-learning approaches to develop risk- prediction models for incident HF in a cohort of postmenopausal women from the Women's Health Initiative (WHI).

Methods: We used 2 machine-learning methods-Least Absolute Shrinkage and Selection Operator (LASSO) and Classification and Regression Trees (CART)-to perform variable selection on 1227 baseline WHI variables for the primary outcome of incident HF. These variables were then used to construct separate Cox proportional hazard models, and we compared these results, using receiver-operating characteristic (ROC) curve analysis, against a comparator model built using variables from the Atherosclerosis Risk in Communities (ARIC) HF prediction model. We analyzed 43,709 women who had 2222 incident HF events; median follow-up was 14.3 years.

Results: LASSO selected 10 predictors, and CART selected 11 predictors. The highest correlation between selected variables was 0.46. In addition to selecting well-established predictors such as age, myocardial infarction, and smoking, novel predictors included physical function, number of pregnancies, number of previous live births and age at menopause. In ROC analysis, the CART-derived model had the highest C-statistic of 0.83 (95% confidence interval [CI], 0.81-0.85), followed by LASSO 0.82 (95% CI, 0.81-0.84) and ARIC 0.73 (95% CI, 0.70-0.76).

Conclusions: Machine-learning approaches can be used to develop HF risk-prediction models that can have better discrimination compared with an established HF risk model and may provide a basis for investigating novel HF predictors.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Tison GH, Avram R, Nah G, et al. Predicting Incident Heart Failure in Women With Machine Learning: The Women's Health Initiative Cohort. Can J Cardiol. 2021;37(11):1708-1714. doi:10.1016/j.cjca.2021.08.006
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Canadian Journal of Cardiology
Rights
Publisher Policy
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}