Multivariate genome wide association and network analysis of subcortical imaging phenotypes in Alzheimer's disease

Abstract

Background: Genome-wide association studies (GWAS) have identified many individual genes associated with brain imaging quantitative traits (QTs) in Alzheimer's disease (AD). However single marker level association discovery may not be able to address the underlying biological interactions with disease mechanism.

Results: In this paper, we used the MGAS (Multivariate Gene-based Association test by extended Simes procedure) tool to perform multivariate GWAS on eight AD-relevant subcortical imaging measures. We conducted multiple iPINBPA (integrative Protein-Interaction-Network-Based Pathway Analysis) network analyses on MGAS findings using protein-protein interaction (PPI) data, and identified five Consensus Modules (CMs) from the PPI network. Functional annotation and network analysis were performed on the identified CMs. The MGAS yielded significant hits within APOE, TOMM40 and APOC1 genes, which were known AD risk factors, as well as a few new genes such as LAMA1, XYLB, HSD17B7P2, and NPEPL1. The identified five CMs were enriched by biological processes related to disorders such as Alzheimer's disease, Legionellosis, Pertussis, and Serotonergic synapse.

Conclusions: The statistical power of coupling MGAS with iPINBPA was higher than traditional GWAS method, and yielded new findings that were missed by GWAS. This study provides novel insights into the molecular mechanism of Alzheimer's Disease and will be of value to novel gene discovery and functional genomic studies.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Meng X, Li J, Zhang Q, et al. Multivariate genome wide association and network analysis of subcortical imaging phenotypes in Alzheimer's disease. BMC Genomics. 2020;21(Suppl 11):896. Published 2020 Dec 29. doi:10.1186/s12864-020-07282-7
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
BMC Genomics
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}