The impacts of precipitation increase and nitrogen addition on soil respiration in a semiarid temperate steppe

dc.contributor.authorZhang, Xiaolin
dc.contributor.authorTan, Yulian
dc.contributor.authorZhang, Bingwei
dc.contributor.authorLi, Ang
dc.contributor.authorDaryanto, Stefani
dc.contributor.authorWang, Lixin
dc.contributor.authorHuang, Jianhui
dc.contributor.departmentDepartment of Earth Sciences, School of Scienceen_US
dc.date.accessioned2017-10-27T14:31:20Z
dc.date.available2017-10-27T14:31:20Z
dc.date.issued2017-01
dc.description.abstractSoil respiration, Rs, is strongly controlled by water availability in semiarid grasslands. However, how Rs is affected by precipitation change (either as rainfall or as snowfall) especially under increasing nitrogen (N) deposition has been uncertain. A manipulative experiment to investigate the responses of growing season Rs to changes in spring snowfall or summer rainfall with or without N addition was conducted in the semiarid temperate steppe of China during three hydrologically contrasting years. Our results showed that both spring snow addition and summer water addition significantly increased Rs by increasing soil moisture. The effect of spring snow addition only occurred in years with both relatively lower natural snowfall and later snowmelt time. Summer water addition showed a much stronger effect on Rs by increasing plant root growth and microbial activities, but the magnitude also largely depended on the possible legacy effect of previous year precipitation. Our results indicated that precipitation increase in the form of snowfall had weaker effects than that in the form of rainfall as the former only accounted for less than 30% of total precipitation. Compared with other ecosystem processes, Rs was less responsible for increase in N deposition as it did not increase root productivity and microbial activities in the soils. Our results provided field data constraints for modeling the ecosystem carbon balance under the future global change scenarios in semiarid grasslands.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationZhang, X., Tan, Y., Zhang, B., Li, A., Daryanto, S., Wang, L., & Huang, J. (2017). The impacts of precipitation increase and nitrogen addition on soil respiration in a semiarid temperate steppe. Ecosphere, 8(1), n/a-n/a. https://doi.org/10.1002/ecs2.1655en_US
dc.identifier.urihttps://hdl.handle.net/1805/14387
dc.language.isoenen_US
dc.publisherWileyen_US
dc.relation.isversionof10.1002/ecs2.1655en_US
dc.relation.journalEcosphereen_US
dc.rightsAttribution 3.0 United States
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/us
dc.sourcePublisheren_US
dc.subjectInner Mongoliaen_US
dc.subjectnitrogen additionen_US
dc.subjectsnow additionen_US
dc.titleThe impacts of precipitation increase and nitrogen addition on soil respiration in a semiarid temperate steppeen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Zhang-2017-Ecosphere.pdf
Size:
2.46 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.88 KB
Format:
Item-specific license agreed upon to submission
Description: