Learning Discriminative Features for Adversarial Robustness

If you need an accessible version of this item, please submit a remediation request.
Date
2022-04
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
IEEE Xplore
Abstract

Deep Learning models have shown incredible image classification capabilities that extend beyond humans. However, they remain susceptible to image perturbations that a human could not perceive. A slightly modified input, known as an Adversarial Example, will result in drastically different model behavior. The use of Adversarial Machine Learning to generate Adversarial Examples remains a security threat in the field of Deep Learning. Hence, defending against such attacks is a studied field of Deep Learning Security. In this paper, we present the Adversarial Robustness of discriminative loss functions. Such loss functions specialize in either inter-class or intra-class compactness. Therefore, generating an Adversarial Example should be more difficult since the decision barrier between different classes will be more significant. We conducted White-Box and Black-Box attacks on Deep Learning models trained with different discriminative loss functions to test this. Moreover, each discriminative loss function will be optimized with and without Adversarial Robustness in mind. From our experimentation, we found White-Box attacks to be effective against all models, even those trained for Adversarial Robustness, with varying degrees of effectiveness. However, state-of-the-art Deep Learning models, such as Arcface, will show significant Adversarial Robustness against Black-Box attacks while paired with adversarial defense methods. Moreover, by exploring Black-Box attacks, we demonstrate the transferability of Adversarial Examples while using surrogate models optimized with different discriminative loss functions.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Hosler, R., Phillips, T., Yu, X., Sundar, A., Zou, X., & Li, F. (2021). Learning Discriminative Features for Adversarial Robustness. 2021 17th International Conference on Mobility, Sensing and Networking (MSN), 303–310. https://doi.org/10.1109/MSN53354.2021.00055
ISSN
978-1-66540-668-0
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
2021 17th International Conference on Mobility, Sensing and Networking (MSN)
Source
Author
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}