WEVar: a novel statistical learning framework for predicting noncoding regulatory variants
Date
Language
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract
Understanding the functional consequence of noncoding variants is of great interest. Though genome-wide association studies or quantitative trait locus analyses have identified variants associated with traits or molecular phenotypes, most of them are located in the noncoding regions, making the identification of causal variants a particular challenge. Existing computational approaches developed for prioritizing noncoding variants produce inconsistent and even conflicting results. To address these challenges, we propose a novel statistical learning framework, which directly integrates the precomputed functional scores from representative scoring methods. It will maximize the usage of integrated methods by automatically learning the relative contribution of each method and produce an ensemble score as the final prediction. The framework consists of two modes. The first 'context-free' mode is trained using curated causal regulatory variants from a wide range of context and is applicable to predict regulatory variants of unknown and diverse context. The second 'context-dependent' mode further improves the prediction when the training and testing variants are from the same context. By evaluating the framework via both simulation and empirical studies, we demonstrate that it outperforms integrated scoring methods and the ensemble score successfully prioritizes experimentally validated regulatory variants in multiple risk loci.