WEVar: a novel statistical learning framework for predicting noncoding regulatory variants

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2021
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Oxford University Press
Abstract

Understanding the functional consequence of noncoding variants is of great interest. Though genome-wide association studies or quantitative trait locus analyses have identified variants associated with traits or molecular phenotypes, most of them are located in the noncoding regions, making the identification of causal variants a particular challenge. Existing computational approaches developed for prioritizing noncoding variants produce inconsistent and even conflicting results. To address these challenges, we propose a novel statistical learning framework, which directly integrates the precomputed functional scores from representative scoring methods. It will maximize the usage of integrated methods by automatically learning the relative contribution of each method and produce an ensemble score as the final prediction. The framework consists of two modes. The first 'context-free' mode is trained using curated causal regulatory variants from a wide range of context and is applicable to predict regulatory variants of unknown and diverse context. The second 'context-dependent' mode further improves the prediction when the training and testing variants are from the same context. By evaluating the framework via both simulation and empirical studies, we demonstrate that it outperforms integrated scoring methods and the ensemble score successfully prioritizes experimentally validated regulatory variants in multiple risk loci.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Wang Y, Jiang Y, Yao B, et al. WEVar: a novel statistical learning framework for predicting noncoding regulatory variants. Brief Bioinform. 2021;22(6):bbab189. doi:10.1093/bib/bbab189
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Briefings in Bioinformatics
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
This item is under embargo {{howLong}}