Combinatorial and quantitative reasoning: Stage 3 high school students’ reason about combinatorics problems and their representation as 3-D arrays
Date
Language
Embargo Lift Date
Department
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract
Researchers have identified three stages of units coordination that influence a range of domains of student reasoning. The primary foci of this research have been students’ reasoning in discrete, non-combinatorial whole number contexts, and with fractions, ratios, proportions, and rates represented using length quantities. This study extends this prior work by examining connections between eight high school students’ combinatorial reasoning and their representation of this reasoning using 3-D arrays. All students in the study were at stage 3 of units coordination. Findings include differentiation between two student groups: one group had interiorized three-levels-of-units, but had not interiorized four-levels-of-units; and the other group had interiorized four-levels-of-units. This differentiation was coordinated with differences in how they reasoned to produce 3-D arrays. The findings from the study indicate how combinatorics problems can support quantitative reasoning, where combinatorial and quantitative reasoning are framed as a foundation for algebraic reasoning.