- Browse by Title
Department of Computer Science Works
Permanent URI for this collection
Browse
Browsing Department of Computer Science Works by Title
Now showing 1 - 10 of 198
Results Per Page
Sort Options
Item A framework for graph-base neural network using numerical simulation of metal powder bed fusion for correlating process parameters and defect generation(Elsevier, 2022) Akter Jahan, Suchana; Al Hasan, Mohammad; El-Mounayri, Hazim; Computer Science, Luddy School of Informatics, Computing, and EngineeringPowder bed fusion (PBF) is the most common technique used for metal additive manufacturing. This process involves consolidation of metal powder using a heat source such as laser or electron beam. During the formation of three-dimensional(3D) objects by sintering metal powders layer by layer, many different thermal phenomena occur that can create defects or anomalies on the final printed part. Similar to other additive manufacturing techniques, PBF has been in practice for decades, yet it is still going through research and development endeavors which is required to understand the physics behind this process. Defects and deformations highly impact the product quality and reliability of the overall manufacturing process; hence, it is essential that we understand the reason and mechanism of defect generation in PBF process and take appropriate measures to rectify them. In this paper, we have attempted to study the effect of processing parameters (scanning speed, laser power) on the generation of defects in PBF process using a graph-based artificial neural network that uses numerical simulation results as input or training data. Use of graph-based machine learning is novel in the area of manufacturing let alone additive manufacturing or powder bed fusion. The outcome of this study provides an opportunity to design a feedback controlled in-situ online monitoring system in powder bed fusion to reduce printing defects and optimize the manufacturing process.Item A Large Open Access Dataset of Brain Metastasis 3D Segmentations with Clinical and Imaging Feature Information(Springer Nature, 2024-02-29) Ramakrishnan, Divya; Jekel, Leon; Chadha, Saahil; Janas, Anastasia; Moy, Harrison; Maleki, Nazanin; Sala, Matthew; Kaur, Manpreet; Cassinelli Petersen, Gabriel; Merkaj, Sara; von Reppert, Marc; Baid, Ujjwal; Bakas, Spyridon; Kirsch, Claudia; Davis, Melissa; Bousabarah, Khaled; Holler, Wolfgang; Lin, MingDe; Westerhoff, Malte; Aneja, Sanjay; Memon, Fatima; Aboian, Mariam S.; Pathology and Laboratory Medicine, School of MedicineResection and whole brain radiotherapy (WBRT) are standard treatments for brain metastases (BM) but are associated with cognitive side effects. Stereotactic radiosurgery (SRS) uses a targeted approach with less side effects than WBRT. SRS requires precise identification and delineation of BM. While artificial intelligence (AI) algorithms have been developed for this, their clinical adoption is limited due to poor model performance in the clinical setting. The limitations of algorithms are often due to the quality of datasets used for training the AI network. The purpose of this study was to create a large, heterogenous, annotated BM dataset for training and validation of AI models. We present a BM dataset of 200 patients with pretreatment T1, T1 post-contrast, T2, and FLAIR MR images. The dataset includes contrast-enhancing and necrotic 3D segmentations on T1 post-contrast and peritumoral edema 3D segmentations on FLAIR. Our dataset contains 975 contrast-enhancing lesions, many of which are sub centimeter, along with clinical and imaging information. We used a streamlined approach to database-building through a PACS-integrated segmentation workflow.Item A note on the multiplicative fairness score in the NIJ recidivism forecasting challenge(Springer Nature, 2021) Mohler, George; Porter, Michael D.; Computer Science, Luddy School of Informatics, Computing, and EngineeringBackground: The 2021 NIJ recidivism forecasting challenge asks participants to construct predictive models of recidivism while balancing false positive rates across groups of Black and white individuals through a multiplicative fairness score. We investigate the performance of several models for forecasting 1-year recidivism and optimizing the NIJ multiplicative fairness metric. Methods: We consider standard linear and logistic regression, a penalized regression that optimizes a convex surrogate loss (that we show has an analytical solution), two post-processing techniques, linear regression with re-balanced data, a black-box general purpose optimizer applied directly to the NIJ metric and a gradient boosting machine learning approach. Results: For the set of models investigated, we find that a simple heuristic of truncating scores at the decision threshold (thus predicting no recidivism across the data) yields as good or better NIJ fairness scores on held out data compared to other, more sophisticated approaches. We also find that when the cutoff is further away from the base rate of recidivism, as is the case in the competition where the base rate is 0.29 and the cutoff is 0.5, then simply optimizing the mean square error gives nearly optimal NIJ fairness metric solutions. Conclusions: The multiplicative metric in the 2021 NIJ recidivism forecasting competition encourages solutions that simply optimize MSE and/or use truncation, therefore yielding trivial solutions that forecast no one will recidivate.Item A trustless architecture of blockchain-enabled metaverse(Elsevier, 2023-03) Xu, Minghui; Guo, Yihao; Hu, Qin; Xiong, Zehui; Yu, Dongxiao; Cheng, Xuizhen; Computer and Information Science, School of ScienceMetaverse has rekindled human beings’ desire to further break space-time barriers by fusing the virtual and real worlds. However, security and privacy threats hinder us from building a utopia. A metaverse embraces various techniques, while at the same time inheriting their pitfalls and thus exposing large attack surfaces. Blockchain, proposed in 2008, was regarded as a key building block of metaverses. it enables transparent and trusted computing environments using tamper-resistant decentralized ledgers. Currently, blockchain supports Decentralized Finance (DeFi) and Non-fungible Tokens (NFT) for metaverses. However, the power of a blockchain has not been sufficiently exploited. In this article, we propose a novel trustless architecture of blockchain-enabled metaverse, aiming to provide efficient resource integration and allocation by consolidating hardware and software components. To realize our design objectives, we provide an On-Demand Trusted Computing Environment (OTCE) technique based on local trust evaluation. Specifically, the architecture adopts a hypergraph to represent a metaverse, in which each hyperedge links a group of users with certain relationship. Then the trust level of each user group can be evaluated based on graph analytics techniques. Based on the trust value, each group can determine its security plan on demand, free from interference by irrelevant nodes. Besides, OTCEs enable large-scale and flexible application environments (sandboxes) while preserving a strong security guarantee.Item Accelerating complex modeling workflows in CyberWater using on-demand HPC/Cloud resources(IEEE, 2021-09) Li, Feng; Chen, Ranran; Fu, Yuankun; Song, Fengguang; Liang, Yao; Ranawaka, Isuru; Pamidighantam, Sudhakar; Luna, Daniel; Liang, Xu; Computer Information and Graphics Technology, School of Engineering and TechnologyWorkflow management systems (WMSs) are commonly used to organize/automate sequences of tasks as workflows to accelerate scientific discoveries. During complex workflow modeling, a local interactive workflow environment is desirable, as users usually rely on their rich, local environments for fast prototyping and refinements before they consider using more powerful computing resources. However, existing WMSs do not simultaneously support local interactive workflow environments and HPC resources. In this paper, we present an on-demand access mechanism to remote HPC resources from desktop/laptop-based workflow management software to compose, monitor and analyze scientific workflows in the CyberWater project. Cyber-Water is an open-data and open-modeling software framework for environmental and water communities. In this work, we extend the open-model, open-data design of CyberWater with on-demand HPC accessing capacity. In particular, we design and implement the LaunchAgent library, which can be integrated into the local desktop environment to allow on-demand usage of remote resources for hydrology-related workflows. LaunchAgent manages authentication to remote resources, prepares the computationally-intensive or data-intensive tasks as batch jobs, submits jobs to remote resources, and monitors the quality of services for the users. LaunchAgent interacts seamlessly with other existing components in CyberWater, which is now able to provide advantages of both feature-rich desktop software experience and increased computation power through on-demand HPC/Cloud usage. In our evaluations, we demonstrate how a hydrology workflow that consists of both local and remote tasks can be constructed and show that the added on-demand HPC/Cloud usage helps speeding up hydrology workflows while allowing intuitive workflow configurations and execution using a desktop graphical user interface.Item ACTS: Extracting Android App Topological Signature through Graphlet Sampling(IEEE, 2016-10) Peng, Wei; Gao, Tianchong; Sisodia, Devkishen; Saha, Tanay Kumar; Li, Feng; Al Hasan, Mohammad; Computer Information and Graphics Technology, School of Engineering and TechnologyAndroid systems are widely used in mobile & wireless distributed systems. In the near future, Android is believed to dominate the mobile distributed environment. However, with the popularity of Android-based smartphones/tablets comes the rampancy of Android-based malware. In this paper, we propose a novel topological signature of Android apps based on the function call graphs (FCGs) extracted from their Android App Packages (APKs). Specifically, by leveraging recent advances in graphlet sampling, the proposed method fully captures the invocator-invocatee relationship at local neighborhoods in an FCG without exponentially inflating the state space. Using real benign app and malware samples, we demonstrate that our method, ACTS (App topologiCal signature through graphleT Sampling), can detect malware and identify malware families robustly and efficiently. More importantly, we demonstrate that, without augmenting the FCG with any semantic features such as bytecode-based vertex typing, local topological information captured by ACTS alone can achieve a high malware detection accuracy. Since ACTS only uses structural features, which are orthogonal to semantic features, it is expected that combining them would give a greater improvement in malware detection accuracy than combining non-orthogonal semantic features.Item Advances in Mobile Communications and Computing(Hindawi, 2009) Durresi, Arjan; Denko, Mieso; Computer and Information Science, School of ScienceItem Advances in Wireless Networks(Hindawi, 2009-04-13) Durresi, Arjan; Denko, Mieso; Computer and Information Science, School of ScienceItem Advancing Active Authentication for User Privacy and Revocability with BioCapsules(ACM, 2023-10) Sanchez, Edwin; Weyer, Anthony; Palackal, Joseph; Wang, Kai; Philips, Tyler; Zou, Xukai; Computer Science, Luddy School of Informatics, Computing, and EngineeringBiometric Facial Authentication has become a pervasive mode of authentication in recent years. With this surge in popularity, concerns over the security and privacy of biometrics-based systems have grown. Therefore, there is a need for a system that can address security and privacy issues while remaining user-friendly and practical. The BioCapsule scheme is a flexible solution that can be embedded in existing biometrics systems in order to provide robust security and privacy protections. While BioCapsules have been evaluated for their static face authentication capabilities, this paper extends the scheme to Active Authentication, where a user is continuously authenticated throughout a session. We use the MOBIO dataset, which contains video recordings of 150 individuals using mobile devices over several sessions, in order to evaluate the BioCapsule scheme within the domain of Active Authentication. We find that the BioCapsule scheme not only performs comparably to baseline, unsecured system performance, but in some cases exceeds baseline performance in terms of False Acceptance Rate, False Rejection Rate, and Equal Error Rate. Through our experiments, we demonstrate that the BioCapsule scheme is a powerful and practical addition to existing biometrics-based Active Authentication systems to provide robust security and privacy protections.Item Adversarial Attacks on Deep Temporal Point Process(IEEE, 2022) Khorshidi, Samira; Wang, Bao; Mohler, George; Computer Science, Luddy School of Informatics, Computing, and EngineeringTemporal point processes have many applications, from crime forecasting to modeling earthquake aftershocks sequences. Due to the flexibility and expressiveness of deep learning, neural network-based approaches have recently shown promise for modeling point process intensities. However, there is a lack of research on the robustness of such models in regards to adversarial attacks and natural shocks to systems. Precisely, while neural point processes may outperform simpler parametric models on in-sample tests, how these models perform when encountering adversarial examples or sharp non-stationary trends remains unknown. Current work proposes several white-box and blackbox adversarial attacks against temporal point processes modeled by deep neural networks. Extensive experiments confirm that predictive performance and parametric modeling of neural point processes are vulnerable to adversarial attacks. Additionally, we evaluate the vulnerability and performance of these models in the presence of non-stationary abrupt changes, using the crimes dataset, during the Covid-19 pandemic, as an example.