- Browse by Title
Department of Geography Works
Permanent URI for this collection
Browse
Browsing Department of Geography Works by Title
Now showing 1 - 10 of 45
Results Per Page
Sort Options
Item Accelerometer and GPS Analysis of Trail Use and Associations With Physical Activity(Human Kinetics, 2018-07) Tamura, Kosuke; Wilson, Jeffrey S.; Puett, Robin C.; Klenosky, David B.; Harper, William A.; Troped, Philip J.; Geography, School of Liberal ArtsBackground: Concurrent use of accelerometers and global positioning system (GPS) data can be used to quantify physical activity (PA) occurring on trails. This study examined associations of trail use with PA and sedentary behavior (SB) and quantified on trail PA using a combination of accelerometer and GPS data. Methods: Adults (N = 142) wore accelerometer and GPS units for 1–4 days. Trail use was defined as a minimum of 2 consecutive minutes occurring on a trail, based on GPS data. We examined associations between trail use and PA and SB. On trail minutes of light-intensity, moderate-intensity, and vigorous-intensity PA, and SB were quantified in 2 ways, using accelerometer counts only and with a combination of GPS speed and accelerometer data. Results: Trail use was positively associated with total PA, moderate-intensity PA, and light-intensity PA (P < .05). On trail vigorous-intensity PA minutes were 346% higher when classified with the combination versus accelerometer only. Light-intensity PA, moderate-intensity PA, and SB minutes were 15%, 91%, and 85% lower with the combination, respectively. Conclusions: Adult trail users accumulated more PA on trail use days than on nontrail use days, indicating the importance of these facilities for supporting regular PA. The combination of GPS and accelerometer data for quantifying on trail activity may be more accurate than accelerometer data alone and is useful for classifying intensity of activities such as bicycling.Item Accelerometer and GPS Data to Analyze Built Environments and Physical Activity(Taylor & Francis, 2019-09) Tamura, Kosuke; Wilson, Jeffrey S.; Goldfeld, Keith; Puett, Robin C.; Klenosky, David B.; Harper, William A.; Troped, Philip J.; Geography, School of Liberal ArtsPurpose: Most built environment studies have quantified characteristics of the areas around participants' homes. However, the environmental exposures for physical activity (PA) are spatially dynamic rather than static. Thus, merged accelerometer and global positioning system (GPS) data were utilized to estimate associations between the built environment and PA among adults. Methods: Participants (N = 142) were recruited on trails in Massachusetts and wore an accelerometer and GPS unit for 1-4 days. Two binary outcomes were created: moderate-to-vigorous PA (MVPA vs. light PA-to-sedentary); and light-to-vigorous PA (LVPA vs. sedentary). Five built environment variables were created within 50-meter buffers around GPS points: population density, street density, land use mix (LUM), greenness, and walkability index. Generalized linear mixed models were fit to examine associations between environmental variables and both outcomes, adjusting for demographic covariates. Results: Overall, in the fully adjusted models, greenness was positively associated with MVPA and LVPA (odds ratios [ORs] = 1.15, 95% confidence interval [CI] = 1.03, 1.30 and 1.25, 95% CI = 1.12, 1.41, respectively). In contrast, street density and LUM were negatively associated with MVPA (ORs = 0.69, 95% CI = 0.67, 0.71 and 0.87, 95% CI = 0.78, 0.97, respectively) and LVPA (ORs = 0.79, 95% CI = 0.77, 0.81 and 0.81, 95% CI = 0.74, 0.90, respectively). Negative associations of population density and walkability with both outcomes reached statistical significance, yet the effect sizes were small. Conclusions: Concurrent monitoring of activity with accelerometers and GPS units allowed us to investigate relationships between objectively measured built environment around GPS points and minute-by-minute PA. Negative relationships between street density and LUM and PA contrast evidence from most built environment studies in adults. However, direct comparisons should be made with caution since most previous studies have focused on spatially fixed buffers around home locations, rather than the precise locations where PA occurs.Item Association Between Residential Greenness and Cardiovascular Disease Risk(Wiley, 2018-12-05) Yeager, Ray; Riggs, Daniel W.; DeJarnett, Natasha; Tollerud, David J.; Wilson, Jeffrey S.; Conklin, Daniel J.; O'Toole, Timothy E.; McCracken, James; Lorkiewicz, Pawel; Xie, Zhengzhi; Zafar, Nagma; Krishnasamy, Sathya S.; Srivastava, Sanjay; Finch, Jordan; Keith, Rachel J.; DeFilippis, Andrew; Rai, Shesh N.; Liu, Gilbert; Bhatnagar, Aruni; Department of Geography, School of Liberal ArtsBackground Exposure to green vegetation has been linked to positive health, but the pathophysiological processes affected by exposure to vegetation remain unclear. To study the relationship between greenness and cardiovascular disease, we examined the association between residential greenness and biomarkers of cardiovascular injury and disease risk in susceptible individuals. Methods and Results In this cross‐sectional study of 408 individuals recruited from a preventive cardiology clinic, we measured biomarkers of cardiovascular injury and risk in participant blood and urine. We estimated greenness from satellite‐derived normalized difference vegetation index (NDVI) in zones with radii of 250 m and 1 km surrounding the participants’ residences. We used generalized estimating equations to examine associations between greenness and cardiovascular disease biomarkers. We adjusted for residential clustering, demographic, clinical, and environmental variables. In fully adjusted models, contemporaneous NDVI within 250 m of participant residence was inversely associated with urinary levels of epinephrine (−6.9%; 95% confidence interval, −11.5, −2.0/0.1 NDVI) and F2‐isoprostane (−9.0%; 95% confidence interval, −15.1, −2.5/0.1 NDVI). We found stronger associations between NDVI and urinary epinephrine in women, those not on β‐blockers, and those who had not previously experienced a myocardial infarction. Of the 15 subtypes of circulating angiogenic cells examined, 11 were inversely associated (8.0–15.6% decrease/0.1 NDVI), whereas 2 were positively associated (37.6–45.8% increase/0.1 NDVI) with contemporaneous NDVI. Conclusions Independent of age, sex, race, smoking status, neighborhood deprivation, statin use, and roadway exposure, residential greenness is associated with lower levels of sympathetic activation, reduced oxidative stress, and higher angiogenic capacity.Item Association Between Residential Greenness and Cardiovascular Disease Risk(American Heart Association, 2018-12-18) Yeager, Ray; Riggs, Daniel W.; DeJarnett, Natasha; Tollerud, David J.; Wilson, Jeffrey S.; Conklin, Daniel J.; O'Toole, Timothy E.; McCracken, James; Lorkiewicz, Pawel; Xie, Zhengzhi; Zafar, Nagma; Krishnasamy, Sathya S.; Srivastava, Sanjay; Finch, Jordan; Keith, Rachel J.; DeFilippis, Andrew; Rai, Shesh N.; Liu, Gilbert; Bhatnagar, Aruni; Geography, School of Liberal ArtsBackground Exposure to green vegetation has been linked to positive health, but the pathophysiological processes affected by exposure to vegetation remain unclear. To study the relationship between greenness and cardiovascular disease, we examined the association between residential greenness and biomarkers of cardiovascular injury and disease risk in susceptible individuals. Methods and Results In this cross-sectional study of 408 individuals recruited from a preventive cardiology clinic, we measured biomarkers of cardiovascular injury and risk in participant blood and urine. We estimated greenness from satellite-derived normalized difference vegetation index ( NDVI ) in zones with radii of 250 m and 1 km surrounding the participants' residences. We used generalized estimating equations to examine associations between greenness and cardiovascular disease biomarkers. We adjusted for residential clustering, demographic, clinical, and environmental variables. In fully adjusted models, contemporaneous NDVI within 250 m of participant residence was inversely associated with urinary levels of epinephrine (-6.9%; 95% confidence interval, -11.5, -2.0/0.1 NDVI ) and F2-isoprostane (-9.0%; 95% confidence interval, -15.1, -2.5/0.1 NDVI ). We found stronger associations between NDVI and urinary epinephrine in women, those not on β-blockers, and those who had not previously experienced a myocardial infarction. Of the 15 subtypes of circulating angiogenic cells examined, 11 were inversely associated (8.0-15.6% decrease/0.1 NDVI ), whereas 2 were positively associated (37.6-45.8% increase/0.1 NDVI ) with contemporaneous NDVI . Conclusions Independent of age, sex, race, smoking status, neighborhood deprivation, statin use, and roadway exposure, residential greenness is associated with lower levels of sympathetic activation, reduced oxidative stress, and higher angiogenic capacity.Item Association of State Social and Environmental Factors With Rates of Self-injury Mortality and Suicide in the United States(AMA, 2022-02) Rockett, Ian R. H.; Jia, Haomiao; Ali, Bina; Banerjee, Aniruddha; Connery, Hilary S.; Nolte, Kurt B.; Miller, Ted; White, Franklin M. M.; DiGregorio, Bernard D.; Larkin, G. Luke; Stack, Steven; Kõlves, Kairi; McHugh, R. Kathryn; Lulla, Vijay O.; Cossman, Jeralynn; De Leo, Diego; Hendricks, Brian; Nestadt, Paul S.; Berry, James H.; D’Onofrio, Gail; Caine, Eric D.; Geography, School of Liberal ArtsImportance Self-injury mortality (SIM) combines suicides and the preponderance of drug misuse–related overdose fatalities. Identifying social and environmental factors associated with SIM and suicide may inform etiologic understanding and intervention design. Objective To identify factors associated with interstate SIM and suicide rate variation and to assess potential for differential suicide misclassification. Design, Setting, and Participants This cross-sectional study used a partial panel time series with underlying cause-of-death data from 50 US states and the District of Columbia for 1999-2000, 2007-2008, 2013-2014 and 2018-2019. Applying data from the Centers for Disease Control and Prevention, SIM includes all suicides and the preponderance of unintentional and undetermined drug intoxication deaths, reflecting self-harm behaviors. Data were analyzed from February to June 2021. Exposures Exposures included inequity, isolation, demographic characteristics, injury mechanism, health care access, and medicolegal death investigation system type. Main Outcomes and Measures The main outcome, SIM, was assessed using unstandardized regression coefficients of interstate variation associations, identified by the least absolute shrinkage and selection operator; ratios of crude SIM to suicide rates per 100 000 population were assessed for potential differential suicide misclassification. Results A total of 101 325 SIMs were identified, including 74 506 (73.5%) among males and 26 819 (26.5%) among females. SIM to suicide rate ratios trended upwards, with an accelerating increase in overdose fatalities classified as unintentional or undetermined (SIM to suicide rate ratio, 1999-2000: 1.39; 95% CI, 1.38-1.41; 2018-2019: 2.12; 95% CI, 2.11-2.14). Eight states recorded a SIM to suicide rate ratio less than 1.50 in 2018-2019 vs 39 states in 1999-2000. Northeastern states concentrated in the highest category (range, 2.10-6.00); only the West remained unrepresented. Least absolute shrinkage and selection operator identified 8 factors associated with the SIM rate in 2018-2019: centralized medical examiner system (β = 4.362), labor underutilization rate (β = 0.728), manufacturing employment (β = −0.056), homelessness rate (β = −0.125), percentage nonreligious (β = 0.041), non-Hispanic White race and ethnicity (β = 0.087), prescribed opioids for 30 days or more (β = 0.117), and percentage without health insurance (β = −0.013) and 5 factors associated with the suicide rate: percentage male (β = 1.046), military veteran (β = 0.747), rural (β = 0.031), firearm ownership (β = 0.030), and pain reliever misuse (β = 1.131). Conclusions and Relevance These findings suggest that SIM rates were associated with modifiable, upstream factors. Although embedded in SIM, suicide unexpectedly deviated in proposed social and environmental determinants. Heterogeneity in medicolegal death investigation processes and data assurance needs further characterization, with the goal of providing the highest-quality reports for developing and tracking public health policies and practices.Item The built environment predicts observed physical activity(2014-05) Kelly, Cheryl; Wilson, Jeffrey S.; Schootman, Mario; Clennin, Morgan; Baker, Elizabeth A.; Miller, Douglas K.; Department of Geography, School of Liberal ArtsBackground: In order to improve our understanding of the relationship between the built environment and physical activity, it is important to identify associations between specific geographic characteristics and physical activity behaviors. Purpose: Examine relationships between observed physical activity behavior and measures of the built environment collected on 291 street segments in Indianapolis and St. Louis. Methods: Street segments were selected using a stratified geographic sampling design to ensure representation of neighborhoods with different land use and socioeconomic characteristics. Characteristics of the built environment on-street segments were audited using two methods: in-person field audits and audits based on interpretation of Google Street View imagery with each method blinded to results from the other. Segments were dichotomized as having a particular characteristic (e.g., sidewalk present or not) based on the two auditing methods separately. Counts of individuals engaged in different forms of physical activity on each segment were assessed using direct observation. Non-parametric statistics were used to compare counts of physically active individuals on each segment with built environment characteristic. Results: Counts of individuals engaged in physical activity were significantly higher on segments with mixed land use or all non-residential land use, and on segments with pedestrian infrastructure (e.g., crosswalks and sidewalks) and public transit. Conclusion: Several micro-level built environment characteristics were associated with physical activity. These data provide support for theories that suggest changing the built environment and related policies may encourage more physical activity.Item Center for Urban Health: Enhancing the health of cities by focusing on communities and the environment(Office of the Vice Chancellor for Research, 2012-04-13) Filippelli, Gabriel; Johnson, Daniel P.; Wiehe, Sarah; Zollinger, TerryUrban sustainability is a new philosophy of developing healthy, productive communities that (1) promote and use locally-produced foods and products, (2) ensure safe access to natural spaces, and (3) establish low-carbon transportation systems. Urban living is arguably the most sustainable form of community given the concentration of resources, protection of arable land, and vertical structure of housing. In fact, urbanization is becoming the global norm; the percentage of global population living in urban settings has increased from less than 30% in 1950 to 47% in 2000; the percentage of urban dwellers is expected to increase to 60% by 2025. The promise of a healthy and sustainable urban future is clouded, however, by the reality of environmental insults, economic disparities, and behavioral pressures that exist in modern cities. The challenge is not how to build a shiny carbon-neutral city from scratch, but rather how to transition our current urban state toward one that is healthier, has less environmental impact, and is more prepared to respond and adjust to variety of environmental, social, and health changes in the future. Several groups at IUPUI and in the community are collaborating to explore connections between environment, behavior, health, and climate as related to urban environments. These translational efforts are inter- and trans-disciplinary, as evidenced by earth scientists publishing with pediatricians, and geographers publishing with epidemiologists. These efforts are largely undertaken with a geospatial and geotemporal research template. This template allows environmental, health, and behavioral data to be collected individually but with reference to space and time, which become important metadata components for analysis. The Center for Urban Health promotes discovery by building research collaborations among Center Investigators, providing seed funds for new research areas, funding graduate fellowships, and sponsoring educational activities such as public lectures and a Visiting Scholars Program.Item Center for Urban Health: Enhancing the health of cities by focusing on communities and the environment(Office of the Vice Chancellor for Research, 2013-04-05) Filippelli, Gabriel; Johnson, Daniel P.; Wiehe, Sarah E.; Zollinger, TerrellUrban sustainability is a new philosophy of developing healthy, productive communities that (1) promote and use locally-produced foods and products, (2) ensure safe access to natural spaces, and (3) establish low-carbon transportation systems. Urban living is arguably the most sustainable form of community given the concentration of resources, protection of arable land, and vertical structure of housing. In fact, urbanization is becoming the global norm; the percentage of global population living in urban settings has increased from less than 30% in 1950 to 47% in 2000; the percentage of urban dwellers is expected to increase to 60% by 2025. The promise of a healthy and sustainable urban future is clouded, however, by the reality of environmental insults, economic disparities, and behavioral pressures that exist in modern cities. The challenge is not how to build a shiny carbon-neutral city from scratch, but rather how to transition our current urban state toward one that is healthier, has less environmental impact, and is more prepared to respond and adjust to variety of environmental, social, and health changes in the future. Several groups at IUPUI and in the community are collaborating to explore connections between environment, behavior, health, and climate as related to urban environments. These translational efforts are inter- and trans-disciplinary, as evidenced by earth scientists publishing with pediatricians, and geographers publishing with epidemiologists. These efforts are largely undertaken with a geospatial and geotemporal research template. This template allows environmental, health, and behavioral data to be collected individually but with reference to space and time, which become important metadata components for analysis. The Center for Urban Health promotes discovery by building research collaborations among Center Investigators, providing seed funds for new research areas, funding graduate fellowships, and sponsoring educational activities such as public lectures and a Visiting Scholars Program.Item Center for Urban Health: Enhancing the health of cities by focusing on communities and the environment(Office of the Vice Chancellor for Research, 2014-04-11) Filippelli, Gabriel; Johnson, Daniel P.; Wiehe, Sarah E.; Watson, Dennis P.Urban sustainability is a new philosophy of developing healthy, productive communities that (1) promote and use locally-produced foods and products, (2) ensure safe access to natural spaces, and (3) establish low-carbon transportation systems. Urban living is arguably the most sustainable form of community given the concentration of resources, protection of arable land, and vertical structure of housing. In fact, urbanization is becoming the global norm; the percentage of global population living in urban settings has increased from less than 30% in 1950 to 47% in 2000; the percentage of urban dwellers is expected to increase to 60% by 2025. The promise of a healthy and sustainable urban future is clouded, however, by the reality of environmental insults, economic disparities, and behavioral pressures that exist in modern cities. The challenge is not how to build a shiny carbon-neutral city from scratch, but rather how to transition our current urban state toward one that is healthier, has less environmental impact, and is more prepared to respond and adjust to variety of environmental, social, and health changes in the future. Several groups at IUPUI and in the community are collaborating to explore connections between environment, behavior, health, and climate as related to urban environments. These translational efforts are inter- and trans-disciplinary, as evidenced by earth scientists publishing with pediatricians, and geographers publishing with epidemiologists. These efforts are largely undertaken with a geospatial and geotemporal research template. This template allows environmental, health, and behavioral data to be collected individually but with reference to space and time, which become important metadata components for analysis. The Center for Urban Health promotes discovery by building research collaborations among Center Investigators, conducting workshops on cutting-edge developments in urban health, and bridging campus and community efforts in public health, including the Reconnecting to Our Waterways (RWO) initiative.Item Challenges in Monitoring Regional Trail(Sage, 2019) Lindsey, Greg; Singer-Berk, Lila; Wilson, Jeffrey S.; Oberg, Eric; Hadden-Loh, Tracy; Geography, School of Liberal ArtsThis study reports traffic monitoring results at 30 locations on a 972-mi shared-use trail network across the east-central United States. We illustrate challenges in adapting the principles in the Federal Highway Administration’s Traffic Monitoring Guide to a regional trail network. We make four contributions: 1) we use factor analysis and k-means clustering to implement a stratified random process for selecting monitoring sites; 2) we illustrate quality assurance procedures and the challenges of obtaining valid results from a multi-state monitoring system; 3) we describe variation in trail traffic volumes across five land use classes in response to daily weather and seasons; and 4) we report two performance measures for the network: annual average daily trail traffic and trail miles traveled. The Rails to Trails Conservancy deployed passive infrared traffic monitors in 2015 through 2017. Site-specific regression models were used to impute missing daily traffic volumes. The effects of weather were consistent across land use classes but the effects of temporal variables, including weekend and season of year, varied. A plan for short-duration monitoring is presented. Results confirm the FHWA monitoring principles and the difficulties of implementing them regionally.