- Browse by Title
Todd Skaar
Permanent URI for this collection
Genomic Medicine: Translating Genetic Discoveries into Clinical Care
Dr. Todd Skaar is an internationally recognized leader in the field of pharmacogenomics. Dr. Skaar and his research team study ways to improve the success of cancer treatment drug therapies. His work focuses on the impact of genomic variability in how these drugs interact with each other and in the body. Better understanding these drug interactions can improve outcomes and reduce hospitalizations. Dr. Skaar’s competitive translational research was awarded an NIH-funded Maximizing Investigators’ Research Award (MIRA).
Dr. Skaar serves as the leader of the Pharmacogenomics (PGx) Implementation Team working under the larger Precision Health Initiative (PHI) inaugural project awarded in 2016. PGx, which utilizes a patient’s genetics to guide selection and dosing of appropriate medications, has the potential to enhance medication efficacy and minimize toxicity. Dr. Skaar’s team has successfully implemented PGx testing in cardiology, oncology, psychiatry, neurology, and in various transplant disciplines.
Dr. Skaar is passionate about mentoring and encouraging young researchers. Trainees have emerged as leaders in translational medicine, as faculty at academic institutions, as scientists working in the pharmaceutical and biotechnology industries, and as regulators at the U.S. Food and Drug Administration and National Institutes of Health. Dr. Skaar exemplifies a translational scientist through his research, collaborations, mentorship of trainees, and through his positive impact on human health.
Dr. Skaar's translation of research into improved health outcomes for patients taking medications is another excellent example of how IUPUI's faculty members are TRANSLATING their RESEARCH INTO PRACTICE.
Browse
Browsing Todd Skaar by Title
Now showing 1 - 10 of 131
Results Per Page
Sort Options
Item The Access Technology Program of the Indiana Clinical Translational Sciences Institute (CTSI): A model to facilitate access to cutting-edge technologies across a state(Cambridge, 2021) Orschell, Christie M.; Skaar, Todd C.; DeFord, Melanie E.; Ybe, Joel; Driscol, Julie; Drury, Christine; Reeves, Lilith; Willis, Monte S.; Reiter, Jill L.; York, Jenna; Orr, Rob; McClintick, Jeanette N.; Sors, Thomas G.; Hunt, Joe; Cornetta, Kenneth; Shekhar, Anantha; Medicine, School of MedicineIntroduction: Access to cutting-edge technologies is essential for investigators to advance translational research. The Indiana Clinical and Translational Sciences Institute (CTSI) spans three major and preeminent universities, four large academic campuses across the state of Indiana, and is mandate to provide best practices to a whole state. Methods: To address the need to facilitate the availability of innovative technologies to its investigators, the Indiana CTSI implemented the Access Technology Program (ATP). The activities of the ATP, or any program of the Indiana CTSI, are challenged to connect technologies and investigators on the multiple Indiana CTSI campuses by the geographical distances between campuses (1–4 hr driving time). Results: Herein, we describe the initiatives developed by the ATP to increase the availability of state-of-the-art technologies to its investigators on all Indiana CTSI campuses, and the methods developed by the ATP to bridge the distance between campuses, technologies, and investigators for the advancement of clinical translational research. Conclusions: The methods and practices described in this publication may inform other approaches to enhance translational research, dissemination, and usage of innovative technologies by translational investigators, especially when distance or multi-campus cultural differences are factors to efficient application.Item Adherence and Tolerability of Alzheimer's Disease Medications: A Pragmatic Randomized Trial(Wiley, 2017-07) Campbell, Noll L.; Perkins, Anthony J.; Gao, Sujuan; Skaar, Todd C.; Li, Lang; Hendrie, Hugh C.; Fowler, Nicole; Callahan, Christopher M.; Boustani, Malaz A.; Department of Medicine, IU School of MedicineBACKGROUND/OBJECTIVES: Post-marketing comparative trials describe medication use patterns in diverse, real-world populations. Our objective was to determine if differences in rates of adherence and tolerability exist among new users to acetylcholinesterase inhibitors (AChEI's). DESIGN: Pragmatic randomized, open label comparative trial of AChEI's currently available in the United States. SETTING: Four memory care practices within four healthcare systems in the greater Indianapolis area. PARTICIPANTS: Eligibility criteria included older adults with a diagnosis of possible or probable Alzheimer's disease (AD) who were initiating treatment with an AChEI. Participants were required to have a caregiver to complete assessments, access to a telephone, and be able to understand English. Exclusion criteria consisted of a prior severe adverse event from AChEIs. INTERVENTION: Participants were randomized to one of three AChEIs in a 1:1:1 ratio and followed for 18 weeks. MEASUREMENTS: Caregiver-reported adherence, defined as taking or not taking study medication, and caregiver-reported adverse events, defined as the presence of an adverse event. RESULTS: 196 participants were included with 74.0% female, 30.6% African Americans, and 72.9% who completed at least twelfth grade. Discontinuation rates after 18 weeks were 38.8% for donepezil, 53.0% for galantamine, and 58.7% for rivastigmine (P = .063) in the intent to treat analysis. Adverse events and cost explained 73.1% and 25.4% of discontinuation. No participants discontinued donepezil due to cost. Adverse events were reported by 81.2% of all participants; no between-group differences in total adverse events were statistically significant. CONCLUSIONS: This pragmatic comparative trial showed high rates of adverse events and cost-related non-adherence with AChEIs. Interventions improving adherence and persistence to AChEIs may improve AD management. TRIAL REGISTRATION: Clinicaltrials.gov: NCT01362686 (https://clinicaltrials.gov/ct2/show/NCT01362686).Item Age-Related Changes in MicroRNA Expression and Pharmacogenes in Human Liver(Wiley, 2015-08) Burgess, Kimberly S.; Philips, Santosh; Benson, Eric A.; Desta, Zeruesenay; Gaedigk, Andrea; Gaedigk, Roger; Segar, Matthew W.; Liu, Yunlong; Skaar, Todd C.; Department of Pharmacology and Toxicology, IU School of MedicineDevelopmental changes in the liver can significantly impact drug disposition. Due to the emergence of microRNAs (miRNAs) as important regulators of drug disposition gene expression, we studied age-dependent changes in miRNA expression. Expression of 533 miRNAs was measured in 90 human liver tissues (fetal, pediatric [1-17 years], and adult [28-80 years]; n = 30 each). In all, 114 miRNAs were upregulated and 72 were downregulated from fetal to pediatric, and 2 and 3, respectively, from pediatric to adult. Among the developmentally changing miRNAs, 99 miRNA-mRNA interactions were predicted or experimentally validated (e.g., hsa-miR-125b-5p-CYP1A1; hsa-miR-34a-5p-HNF4A). In human liver samples (n = 10 each), analyzed by RNA-sequencing, significant negative correlations were observed between the expression of >1,000 miRNAs and mRNAs of drug disposition and regulatory genes. Our data suggest a mechanism for the marked changes in hepatic gene expression between the fetal and pediatric developmental periods, and support a role for these age-dependent miRNAs in regulating drug disposition.Item Allele-specific expression and high-throughput reporter assay reveal functional genetic variants associated with alcohol use disorders(Springer Nature, 2021-04) Rao, Xi; Thapa, Kriti S.; Chen, Andy B.; Lin, Hai; Gao, Hongyu; Reiter, Jill L.; Hargreaves, Katherine A.; Ipe, Joseph; Lai, Dongbing; Xuei, Xiaoling; Wang, Yue; Gu, Hongmei; Kapoor, Manav; Farris, Sean P.; Tischfield, Jay; Foroud, Tatiana; Goate, Alison M.; Skaar, Todd C.; Mayfield, R. Dayne; Edenberg, Howard J.; Liu, Yunlong; Medical and Molecular Genetics, School of MedicineGenome-wide association studies (GWAS) of complex traits, such as alcohol use disorders (AUD), usually identify variants in non-coding regions and cannot by themselves distinguish whether the associated variants are functional or in linkage disequilibrium with the functional variants. Transcriptome studies can identify genes whose expression differs between alcoholics and controls. To test which variants associated with AUD may cause expression differences, we integrated data from deep RNA-seq and GWAS of four postmortem brain regions from 30 subjects with AUD and 30 controls to analyze allele-specific expression (ASE). We identified 88 genes with differential ASE in subjects with AUD compared to controls. Next, to test one potential mechanism contributing to the differential ASE, we analyzed single nucleotide polymorphisms (SNPs) in the 3′ untranslated regions (3′UTR) of these genes. Of the 88 genes with differential ASE, 61 genes contained 437 SNPs in the 3′UTR with at least one heterozygote among the subjects studied. Using a modified PASSPORT-seq (parallel assessment of polymorphisms in miRNA target-sites by sequencing) assay, we identified 25 SNPs that affected RNA levels in a consistent manner in two neuroblastoma cell lines, SH-SY5Y and SK-N-BE(2). Many of these SNPs are in binding sites of miRNAs and RNA-binding proteins, indicating that these SNPs are likely causal variants of AUD-associated differential ASE. In sum, we demonstrate that a combination of computational and experimental approaches provides a powerful strategy to uncover functionally relevant variants associated with the risk for AUD.Item Allele-specific expression and high-throughput reporter assay reveal functional genetic variants associated with alcohol use disorders.(Springer, 2021-04) Rao, Xi; Thapa, Kriti S.; Chen, Andy B.; Lin, Hai; Gao, Hongyu; Reiter, Jill L.; Hargreaves, Katherine A.; Ipe, Joseph; Lai, Dongbing; Xuei, Xiaoling; Wang, Yue; Gu, Hongmei; Kapoor, Manav; Farris, Sean P.; Tischfield, Jay; Foroud, Tatiana; Goate, Alison M.; Skaar, Todd C.; Mayfield, R. Dayne; Edenberg, Howard J.; Liu, YunlongGenome-wide association studies (GWAS) of complex traits, such as alcohol use disorders (AUD), usually identify variants in non-coding regions and cannot by themselves distinguish whether the associated variants are functional or in linkage disequilibrium with the functional variants. Transcriptome studies can identify genes whose expression differs between alcoholics and controls. To test which variants associated with AUD may cause expression differences, we integrated data from deep RNA-seq and GWAS of four postmortem brain regions from 30 subjects with AUD and 30 controls to analyze allele-specific expression (ASE). We identified 88 genes with differential ASE in subjects with AUD compared to controls. Next, to test one potential mechanism contributing to the differential ASE, we analyzed single nucleotide polymorphisms (SNPs) in the 3' untranslated regions (3'UTR) of these genes. Of the 88 genes with differential ASE, 61 genes contained 437 SNPs in the 3'UTR with at least one heterozygote among the subjects studied. Using a modified PASSPORT-seq (parallel assessment of polymorphisms in miRNA target-sites by sequencing) assay, we identified 25 SNPs that affected RNA levels in a consistent manner in two neuroblastoma cell lines, SH-SY5Y and SK-N-BE(2). Many of these SNPs are in binding sites of miRNAs and RNA-binding proteins, indicating that these SNPs are likely causal variants of AUD-associated differential ASE. In sum, we demonstrate that a combination of computational and experimental approaches provides a powerful strategy to uncover functionally relevant variants associated with the risk for AUD.Item Allelic decomposition and exact genotyping of highly polymorphic and structurally variant genes(Springer Nature, 2018-02-26) Numanagić, Ibrahim; Malikić, Salem; Ford, Michael; Qin, Xiang; Toji, Lorraine; Radovich, Milan; Skaar, Todd C.; Pratt, Victoria M.; Berger, Bonnie; Scherer, Steve; Sahinalp, S. Cenk; Medicine, School of MedicineHigh-throughput sequencing provides the means to determine the allelic decomposition for any gene of interest-the number of copies and the exact sequence content of each copy of a gene. Although many clinically and functionally important genes are highly polymorphic and have undergone structural alterations, no high-throughput sequencing data analysis tool has yet been designed to effectively solve the full allelic decomposition problem. Here we introduce a combinatorial optimization framework that successfully resolves this challenging problem, including for genes with structural alterations. We provide an associated computational tool Aldy that performs allelic decomposition of highly polymorphic, multi-copy genes through using whole or targeted genome sequencing data. For a large diverse sequencing data set, Aldy identifies multiple rare and novel alleles for several important pharmacogenes, significantly improving upon the accuracy and utility of current genotyping assays. As more data sets become available, we expect Aldy to become an essential component of genotyping toolkits.Item Alt Event Finder: a tool for extracting alternative splicing events from RNA-seq data.(BMC, 2012) Zhou, Ao; Breese, Marcus R.; Hao, Yangyang; Edenberg, Howard J.; Li, Lang; Skaar, Todd C.; Liu, YunlongBACKGROUND: Alternative splicing increases proteome diversity by expressing multiple gene isoforms that often differ in function. Identifying alternative splicing events from RNA-seq experiments is important for understanding the diversity of transcripts and for investigating the regulation of splicing. RESULTS: We developed Alt Event Finder, a tool for identifying novel splicing events by using transcript annotation derived from genome-guided construction tools, such as Cufflinks and Scripture. With a proper combination of alignment and transcript reconstruction tools, Alt Event Finder is capable of identifying novel splicing events in the human genome. We further applied Alt Event Finder on a set of RNA-seq data from rat liver tissues, and identified dozens of novel cassette exon events whose splicing patterns changed after extensive alcohol exposure. CONCLUSIONS: Alt Event Finder is capable of identifying de novo splicing events from data-driven transcript annotation, and is a useful tool for studying splicing regulation.Item AMPD1 polymorphism and response to regadenoson(Future Medicine, 2015-11) Saab, Rayan; Zouk, Aline N.; Mastouri, Ronald; Skaar, Todd C.; Philips, Santosh; Kreutz, Rolf P.; Department of Medicine, IU School of MedicineAIMS: AMPD1 c.34C > T (rs17602729) polymorphism results in AMPD1 deficiency. We examined the association of AMPD1 deficiency and variability of hemodynamic response to regadenoson. SUBJECTS & METHODS: Genotyping for c.34C>T was performed in 267 patients undergoing regadenoson cardiac stress testing. RESULTS: Carriers of c.34C >T variant exhibited higher relative changes in systolic blood pressure (SBP) compared with wild-type subjects ([%] SBP change to peak: 12 ± 25 vs 5 ± 13%; p = 0.01) ([%] SBP change to nadir: -3 ± 15 vs -7 ± 11%; p = 0.04). Change in heart rate was similar between groups, but side effects were more common in carriers of the variant (+LR = 4.2; p = 0.04). CONCLUSION: AMPD1 deficiency may be involved in the modulation of regadenoson's systemic effects.Item Analytical Validation of Variants to Aid in Genotype-Guided Therapy for Oncology(Elsevier, 2019) Swart, Marelize; Stansberry, Wesley M.; Pratt, Victoria M.; Medeiros, Elizabeth B.; Kiel, Patrick J.; Shen, Fei; Schneider, Bryan P.; Skaar, Todd C.; Medical and Molecular Genetics, School of MedicineThe Clinical Laboratory Improvement Amendments (CLIA) of 1988 requires that pharmacogenetic genotyping methods need to be established according to technical standards and laboratory practice guidelines before testing can be offered to patients. Testing methods for variants in ABCB1, CBR3, COMT, CYP3A7, C8ORF34, FCGR2A, FCGR3A, HAS3, NT5C2, NUDT15, SBF2, SEMA3C, SLC16A5, SLC28A3, SOD2, TLR4, and TPMT were validated in a CLIA-accredited laboratory. As no known reference materials were available, DNA samples that were from Coriell Cell Repositories (Camden, NJ) were used for the analytical validation studies. Pharmacogenetic testing methods developed here were shown to be accurate and 100% analytically sensitive and specific. Other CLIA-accredited laboratories interested in offering pharmacogenetic testing for these genetic variants, related to genotype-guided therapy for oncology, could use these publicly available samples as reference materials when developing and validating new genetic tests or refining current assays.Item Analytical validity of a genotyping assay for use with personalized antihypertensive and chronic kidney disease therapy(Wolters Kluwer, 2019-01) Collins, Kimberly; Pratt, Victoria; Stansberry, Wesley; Medeiros, Elizabeth; Kannegolla, Karthik; Swart, Marelize; Skaar, Todd C.; Chapman, Arlene; Decker, Brian; Moorthi, Ranjani; Eadon, Michael; Medicine, School of MedicineHypertension and chronic kidney disease are inextricably linked. Hypertension is a well-recognized contributor to chronic kidney disease progression and, in turn, renal disease potentiates hypertension. A generalized approach to drug selection and dosage has not proven effective in managing these conditions, in part, because patients with heterogeneous kidney disease and hypertension etiologies are frequently grouped according to functional or severity classifications. Genetic testing may serve as an important tool in the armamentarium of clinicians who embrace precision medicine. Increasing scientific evidence has supported the utilization of genomic information to select efficacious antihypertensive therapy and understand hereditary contributors to chronic kidney disease progression. Given the wide array of antihypertensive agents available and diversity of genetic renal disease predictors, a panel-based approach to genotyping may be an efficient and economic means of establishing an individualized blood pressure response profile for patients with various forms of chronic kidney disease and hypertension. In this manuscript, we discuss the validation process of a Clinical Laboratory Improvement Amendments (CLIA)-approved genetic test to relay information on 72 genetic variants associated with kidney disease progression and hypertension therapy. These genomic-based interventions, in addition to routine clinical data, may help inform physicians to provide personalized therapy.