ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "unsupervised segmentation"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Query Segmentation For E-Commerce Sites
    (2013-07-12) Gong, Xiaojing; Al Hasan, Mohammad; Fang, Shiaofen; Raje, Rajeev
    Query segmentation module is an integral part of Natural Language Processing which analyzes users' query and divides them into separate phrases. Published works on the query segmentation focus on the web search using Google n-gram frequencies corpus or text retrieval from relational databases. However, this module is also useful in the domain of E-Commerce for product search. In this thesis, we will discuss query segmentation in the context of the E-Commerce area. We propose a hybrid unsupervised segmentation methodology which is based on prefix tree, mutual information and relative frequency count to compute the score of query pairs and involve Wikipedia for new words recognition. Furthermore, we use two unique E-Commerce evaluation methods to quantify the accuracy of our query segmentation method.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University