Query Segmentation For E-Commerce Sites

Date
2013-07-12
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
M.S.
Degree Year
2012
Department
Department of Computer and Information Science
Grantor
Purdue University
Journal Title
Journal ISSN
Volume Title
Found At
Can't use the file because of accessibility barriers? Contact us with the title of the item, permanent link, and specifics of your accommodation need.
Abstract

Query segmentation module is an integral part of Natural Language Processing which analyzes users' query and divides them into separate phrases. Published works on the query segmentation focus on the web search using Google n-gram frequencies corpus or text retrieval from relational databases. However, this module is also useful in the domain of E-Commerce for product search. In this thesis, we will discuss query segmentation in the context of the E-Commerce area. We propose a hybrid unsupervised segmentation methodology which is based on prefix tree, mutual information and relative frequency count to compute the score of query pairs and involve Wikipedia for new words recognition. Furthermore, we use two unique E-Commerce evaluation methods to quantify the accuracy of our query segmentation method.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}