- Browse by Subject
Browsing by Subject "spinal cord injury"
Now showing 1 - 10 of 13
Results Per Page
Sort Options
Item Early-onset treadmill training reduces mechanical allodynia and modulates calcitonin gene-related peptide fiber density in lamina III/IV in a mouse model of spinal cord contusion injury(Lippincott, Williams, and Wilkins, 2016-03) Nees, Timo A.; Tappe-Theodor, Anke; Sliwinski, Christopher; Motsch, Melanie; Rupp, Rüdiger; Kuner, Rohini; Weidner, Norbert; Blesch, Armin; Department of Neurological Surgery, IU School of MedicineAbstract: Below-level central neuropathic pain (CNP) affects a large proportion of spinal cord injured individuals. To better define the dynamic changes of the spinal cord neural network contributing to the development of CNP after spinal cord injury (SCI), we characterized the morphological and behavioral correlates of CNP in female C57BL/6 mice after a moderate T11 contusion SCI (50 kdyn) and the influence of moderate physical activity. Compared with sham-operated animals, injured mice developed mechanical allodynia 2 weeks post injury when tested with small-diameter von Frey hair filaments (0.16 g and 0.4 g filament), but presented hyporesponsiveness to noxious mechanical stimuli (1.4 g filament). The mechano-sensory alterations lasted up to 35 days post injury, the longest time point examined. The response latency to heat stimuli already decreased significantly 10 days post injury reaching a plateau 2 weeks later. In contrast, injured mice developed remarkable hyposensitivity to cold stimuli. Animals that underwent moderate treadmill training (2 × 15 minutes; 5 d/wk) showed a significant reduction in the response rate to light mechanical stimuli as early as 6 days after training. Calcitonin gene-related peptide (CGRP) labeling in lamina III-IV of the dorsal horn revealed significant increases in CGRP-labeling density in injured animals compared with sham control animals. Importantly, treadmill training reduced CGRP-labeling density by about 50% (P < 0.01), partially reducing the injury-induced increases. Analysis of IB4-labeled nonpeptidergic sensory fibers revealed no differences between experimental groups. Abnormalities in temperature sensation were not influenced by physical activity. Thus, treadmill training partially resolves signs of below-level CNP after SCI and modulates the density of CGRP-labeled fibers.Item Exercise-Induced Alterations in Sympathetic-Somatomotor Coupling in Incomplete Spinal Cord Injury(Mary Ann Liebert, Inc., publishers, 2019-09-15) Onushko, Tanya; Mahtani, Gordhan B.; Brazg, Gabrielle; Hornby, T. George; Schmit, Brian D.; Physical Medicine and Rehabilitation, School of MedicineThe aim of this study was to understand how high- and low-intensity locomotor training (LT) affects sympathetic-somatomotor (SS) coupling in people with incomplete spinal cord injury (SCI). Proper coupling between sympathetic and somatomotor systems allows controlled regulation of cardiovascular responses to exercise. In people with SCI, altered connectivity between descending pathways and spinal segments impairs sympathetic and somatomotor coordination, which may have deleterious effects during exercise and limit rehabilitation outcomes. We postulated that high-intensity LT, which repeatedly engages SS systems, would alter SS coupling. Thirteen individuals (50 ± 7.2 years) with motor incomplete spinal cord injuries (American Spinal Injury Association Impairment Scale C or D; injury level >T6) participated in a locomotor treadmill training program. Patients were randomized into either a high-intensity (high-LT; 70–85% of maximum predicted heart rate; n = 6) group or a low-intensity (low-LT; 50–65% of maximum predicted heart rate; n = 7) group and completed up to 20 LT training sessions over 4–6 weeks, 3–5 days/week. Before and after taining, we tested SS coupling by eliciting reflexive sympathetic activity through a cold stimulation, noxious stimulation, and a mental math task while we measured tendon reflexes, blood pressure, and heart rate. Participants who completed high- versus low-LT exhibited significant decreases in reflex torques during triggered sympathetic activity (cold: −83 vs. 13%, p < 0.01; pain: −65 vs. 54%, p < 0.05; mental math: −43 vs. 41%; p < 0.05). Mean arterial pressure responses to sympathetic stimuli were slightly higher following high- versus low-LT (cold: 30 vs. −1.5%; pain: 6 vs. −12%; mental math: 5 vs. 7%), although differences were not statistically significant. These results suggest that high-LT may be advantageous to low-LT to improve SS coupling in people with incomplete SCI.Item Functional and Histological Gender Comparison of Age-Matched Rats after Moderate Thoracic Contusive Spinal Cord Injury(Mary Ann Liebert, 2019-05-28) Walker, Chandler L.; Fry, Colin M.E.; Wang, Junmei; Du, Xiaolong; Zuzzio, Kirstin; Liu, Nai-Kui; Walker, Melissa J.; Xu, Xiao-Ming; Neurological Surgery, School of MedicineSpinal cord injury (SCI) afflicts hundreds of thousands of Americans, and most SCI (∼80%) occurs in males. In experimental animal models, however, many studies used females. Funding agencies like the National Institutes of Health recommend that new proposed studies should include both genders due to variations in gender response to injuries, diseases, and treatments. However, cost and considerations for some animal models, such as SCI, affect investigators in adapting to this recommendation. Research has increased comparing gender effects in various disease and injury models, including SCI. However, most studies use weight-matched animals, which poses issues in comparing results and outcomes. The present study compared histologic and functional outcomes between age-matched male and female Sprague-Dawley rats in a moderate thoracic contusion SCI model. Cresyl violet and eosin staining showed no significant differences in lesion volume between genders after 9 weeks post-SCI (p > 0.05). Luxol fast blue–stained spared myelin was similar between genders, although slightly greater (∼6%) in spared myelin, compared with cord volume (p = 0.044). Glial reactivity and macrophage labeling in the lesion area was comparable between genders, as well. Basso, Beattie, Bresnahan (BBB) functional scores were not significantly different between genders, and Hargreaves thermal hyperalgesia and Gridwalk sensorimotor analyses also were similar between genders, compared with uninjured gender controls. Analysis of covariance showed weight did not influence functional recovery as assessed through BBB (p = 0.65) or Gridwalk assessment (p = 0.63) in this study. In conclusion, our findings suggest age-matched male and female rats recover similarly in a common clinically relevant SCI model.Item History of Glial Cell Line-Derived Neurotrophic Factor (GDNF) and Its Use for Spinal Cord Injury Repair(MDPI, 2018-06-13) Walker, Melissa J.; Xu, Xiao-Ming; Neurological Surgery, School of MedicineFollowing an initial mechanical insult, traumatic spinal cord injury (SCI) induces a secondary wave of injury, resulting in a toxic lesion environment inhibitory to axonal regeneration. This review focuses on the glial cell line-derived neurotrophic factor (GDNF) and its application, in combination with other factors and cell transplantations, for repairing the injured spinal cord. As studies of recent decades strongly suggest that combinational treatment approaches hold the greatest therapeutic potential for the central nervous system (CNS) trauma, future directions of combinational therapies will also be discussed.Item Leveraging Health Information Exchange to Construct a Registry for Traumatic Brain Injury, Spinal Cord Injury and Stroke in Indiana(2018-04-16) Rahurkar, Saurabh; McFarlane, Timothy D.; Wang, Jane; Hoover, Sarah; Hammond, Flora; Kean, Jacob; Dixon, Brian E.; Epidemiology, School of Public HealthTraumatic brain injury (TBI), spinal cord injury (SCI) and stroke are conditions of interest to public health as they can result in long-term outcomes and disabilities. Specialized registries can facilitate public health surveillance, however only 4% of hospitals in the United States actively engage in electronic reporting to these registries. We leveraged electronic claims and clinical data from a health information exchange to create a statewide TBI/SCI/Stroke registry to facilitate the study of long-term outcomes and health services utilization. The registry contains 109,943 TBI patients, 9,027 SCI patients and 117,084 stroke patients with a mean of 3 years of follow-up data after injury. Additionally, the registry contains data on individual patient encounters, prescriptions and clinical variables. The high-dimensional data with large sample sizes may present a valuable informatics resource for injury research as well as public health surveillance.Item Molybdenum disulfide nanoflowers mediated anti-inflammation macrophage modulation for spinal cord injury treatment(Elsevier, 2019-08) Sun, Guodong; Yang, Shuxian; Cai, Huaihong; Shu, Yijin; Han, Qi; Wang, Baocheng; Li, Zhizhong; Zhou, Libing; Gao, Qingsheng; Yin, Zhinan; Neurological Surgery, School of MedicineSpinal cord injury (SCI) can cause locomotor dysfunctions and sensory deficits. Evidence shows that functional nanodrugs can regulate macrophage polarization and promote anti-inflammatory cytokine expression, which is feasible in SCI immunotherapeutic treatments. Molybdenum disulfide (MoS2) nanomaterials have garnered great attention as potential carriers for therapeutic payload. Herein, we synthesize MoS2@PEG (MoS2 = molybdenum disulfide, PEG = poly (ethylene glycol)) nanoflowers as an effective carrier for loading etanercept (ET) to treat SCI. We characterize drug loading and release properties of MoS2@PEG in vitro and demonstrate that ET-loading MoS2@PEG obviously inhibits the expression of M1-related pro-inflammatory markers (TNF-α, CD86 and iNOS), while promoting M2-related anti-inflammatory markers (Agr1, CD206 and IL-10) levels. In vivo, the mouse model of SCI shows that long-circulating ET-MoS2@PEG nanodrugs can effectively extravasate into the injured spinal cord up to 96 h after SCI, and promote macrophages towards M2 type polarization. As a result, the ET-loading MoS2@PEG administration in mice can protect survival motor neurons, thus, reducing injured areas at central lesion sites, and significantly improving locomotor recovery. This study demonstrates the anti-inflammatory and neuroprotective activities of ET-MoS2@PEG and promising utility of MoS2 nanomaterial-mediated drug delivery.Item Neuropathic pain after spinal cord injury: the impact of sensorimotor activity(Wolters Kluwer, 2017-03) Nees, Timo A.; Finnerup, Nanna B.; Blesch, Armin; Weidner, Norbert; Neurological Surgery, School of MedicineItem A Novel Vertebral Stabilization Method for Producing Contusive Spinal Cord Injury(Jove, 2015-01) Walker, Melissa J.; Walker, Chandler L.; Zhang, Y. Ping; Shields, Lisa B. E.; Shields, Christopher B.; Xu, Xiao-Ming; Department of Anatomy & Cell Biology, IU School of MedicineClinically-relevant animal cervical spinal cord injury (SCI) models are essential for developing and testing potential therapies; however, producing reliable cervical SCI is difficult due to lack of satisfactory methods of vertebral stabilization. The conventional method to stabilize the spine is to suspend the rostral and caudal cervical spine via clamps attached to cervical spinous processes. However, this method of stabilization fails to prevent tissue yielding during the contusion as the cervical spinal processes are too short to be effectively secured by the clamps (Figure 1). Here we introduce a new method to completely stabilize the cervical vertebra at the same level of the impact injury. This method effectively minimizes movement of the spinal column at the site of impact, which greatly improves the production of consistent SCIs. We provide visual description of the equipment (Figure 2-4), methods, and a step-by-step protocol for the stabilization of the cervical 5 vertebra (C5) of adult rats, to perform laminectomy (Figure 5) and produce a contusive SCI thereafter. Although we only demonstrate a cervical hemi-contusion using the NYU/MASCIS impactor device, this vertebral stabilization technique can be applied to other regions of the spinal cord, or be adapted to other SCI devices. Improving spinal cord exposure and fixation through vertebral stabilization may be valuable for producing consistent and reliable injuries to the spinal cord. This vertebral stabilization method can also be used for stereotactic injections of cells and tracers, and for imaging using two-photon microscopy in various neurobiological studies.Item Optogenetics and its application in neural degeneration and regeneration(Wolters Kluwer, 2017-08) Ordaz, Josue D.; Wu, Wei; Xu, Xiao-Ming; Neurological Surgery, School of MedicineNeural degeneration and regeneration are important topics in neurological diseases. There are limited options for therapeutic interventions in neurological diseases that provide simultaneous spatial and temporal control of neurons. This drawback increases side effects due to non-specific targeting. Optogenetics is a technology that allows precise spatial and temporal control of cells. Therefore, this technique has high potential as a therapeutic strategy for neurological diseases. Even though the application of optogenetics in understanding brain functional organization and complex behaviour states have been elaborated, reviews of its therapeutic potential especially in neurodegeneration and regeneration are still limited. This short review presents representative work in optogenetics in disease models such as spinal cord injury, multiple sclerosis, epilepsy, Alzheimer’s disease and Parkinson’s disease. It is aimed to provide a broader perspective on optogenetic therapeutic potential in neurodegeneration and neural regeneration.Item The p53 Pathway Controls SOX2-Mediated Reprogramming in the Adult Mouse Spinal Cord(Elsevier, 2016-10-11) Wang, Lei-Lei; Su, Zhida; Tai, Wenjiao; Zou, Yuhua; Xu, Xiao-Ming; Zhang, Chun-Li; Department of Neurological Surgery, IU School of MedicineAlthough the adult mammalian spinal cord lacks intrinsic neurogenic capacity, glial cells can be reprogrammed in vivo to generate neurons after spinal cord injury (SCI). How this reprogramming process is molecularly regulated, however, is not clear. Through a series of in vivo screens, we show here that the p53-dependent pathway constitutes a critical checkpoint for SOX2-mediated reprogramming of resident glial cells in the adult mouse spinal cord. While it has no effect on the reprogramming efficiency, the p53 pathway promotes cell-cycle exit of SOX2-induced adult neuroblasts (iANBs). As such, silencing of either p53 or p21 markedly boosts the overall production of iANBs. A neurotrophic milieu supported by BDNF and NOG can robustly enhance maturation of these iANBs into diverse but predominantly glutamatergic neurons. Together, these findings have uncovered critical molecular and cellular checkpoints that may be manipulated to boost neuron regeneration after SCI.