- Browse by Subject
Browsing by Subject "scaffolds"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item 3D Bone Morphology Alters Gene Expression, Motility, and Drug Responses in Bone Metastatic Tumor Cells(MDPI, 2020-09-21) Dadwal, Ushashi C.; Merkel, Alyssa R.; Page, Jonathan M.; Kwakwa, Kristin A.; Kessler, Michael; Rhoades, Julie A.; Anatomy and Cell Biology, School of MedicinePatients with advanced skeletal metastases arising from primary cancers including breast, lung, and prostate suffer from extreme pain, bone loss, and frequent fractures. While the importance of interactions between bone and tumors is well-established, our understanding of complex cell–cell and cell–microenvironment interactions remains limited in part due to a lack of appropriate 3D bone models. To improve our understanding of the influence of bone morphometric properties on the regulation of tumor-induced bone disease (TIBD), we utilized bone-like 3D scaffolds in vitro and in vivo. Scaffolds were seeded with tumor cells, and changes in cell motility, proliferation, and gene expression were measured. Genes associated with TIBD significantly increased with increasing scaffold rigidity. Drug response differed when tumors were cultured in 3D compared to 2D. Inhibitors for Integrin β3 and TGF-β Receptor II significantly reduced bone-metastatic gene expression in 2D but not 3D, while treatment with the Gli antagonist GANT58 significantly reduced gene expression in both 2D and 3D. When tumor-seeded 3D scaffolds were implanted into mice, infiltration of myeloid progenitors changed in response to pore size and rigidity. This study demonstrates a versatile 3D model of bone used to study the influence of mechanical and morphometric properties of bone on TIBD.Item Fabrication of Poly-l-lactic Acid/Dicalcium Phosphate Dihydrate Composite Scaffolds with High Mechanical Strength-Implications for Bone Tissue Engineering(MDPI, 2015) Tanataweethum, Nida; Liu, Wai Ching; Goebel, W. Scott; Li, Ding; Chu, Tien Min; Department of Biomedical Engineering, School of Engineering and TechnologyScaffolds were fabricated from poly-l-lactic acid (PLLA)/dicalcium phosphate dihydrate (DCPD) composite by indirect casting. Sodium citrate and PLLA were used to improve the mechanical properties of the DCPD scaffolds. The resulting PLLA/DCPD composite scaffold had increased diametral tensile strength and fracture energy when compared to DCPD only scaffolds (1.05 vs. 2.70 MPa and 2.53 vs. 12.67 N-mm, respectively). Sodium citrate alone accelerated the degradation rate by 1.5 times independent of PLLA. Cytocompatibility of all samples were evaluated using proliferation and differentiation parameters of dog-bone marrow stromal cells (dog-BMSCs). The results showed that viable dog-BMSCs attached well on both DCPD and PLLA/DCPD composite surfaces. In both DCPD and PLLA/DCPD conditioned medium, dog-BMSCs proliferated well and expressed alkaline phosphatase (ALP) activity indicating cell differentiation. These findings indicate that incorporating both sodium citrate and PLLA could effectively improve mechanical strength and biocompatibility without increasing the degradation time of calcium phosphate cement scaffolds for bone tissue engineering purposes.Item Of balls, inks and cages: Hybrid biofabrication of 3D tissue analogs(2019) Moldovan, Nicanor I.; Moldovan, Leni; Raghunath, Michael; Biomedical Engineering, School of Engineering and TechnologyThe overarching principle of three-dimensional (3D) bioprinting is the placing of cells or cell clusters in the 3D space to generate a cohesive tissue microarchitecture that comes close to in vivo characteristics. To achieve this goal, several technical solutions are available, generating considerable combinatorial bandwidth: (i) Support structures are generated first, and cells are seeded subsequently; (ii) alternatively, cells are delivered in a printing medium, so-called “bioink,” that contains them during the printing process and ensures shape fidelity of the generated structure; and (iii) a “scaffold-free” version of bioprinting, where only cells are used and the extracellular matrix is produced by the cells themselves, also recently entered a phase of accelerated development and successful applications. However, the scaffold-free approaches may still benefit from secondary incorporation of scaffolding materials, thus expanding their versatility. Reversibly, the bioink-based bioprinting could also be improved by adopting some of the principles and practices of scaffold-free biofabrication. Collectively, we anticipate that combinations of these complementary methods in a “hybrid” approach, rather than their development in separate technological niches, will largely increase their efficiency and applicability in tissue engineering.